Забелязахме, че използвате Ad Blocker

Разбираме желанието ви за по-добро потребителско изживяване, но рекламите помагат за поддържането на форума.

Имате два варианта:
1. Регистрирайте се безплатно и разглеждайте форума без реклами
2. Изключете Ad Blocker-а за този сайт:
    • Кликнете върху иконата на Ad Blocker в браузъра
    • Изберете "Pause" или "Disable" за този сайт

Регистрирайте се или обновете страницата след изключване на Ad Blocker

Отиди на
Форум "Наука"

Exhemus

Потребител
  • Брой отговори

    1991
  • Регистрация

  • Последен вход

  • Days Won

    10

ВСИЧКО ПУБЛИКУВАНО ОТ Exhemus

  1. Така е, но ти ми отговори какво пишат твоите източници за експлоатационния живот на реакторите за изкуствана фотосинтеза? Ако отговорът е два дена, не си струва да питам чатбота - тази технология е още много зелена. пс понеже нямам регистрация, дневния лимит на отговори е много малък
  2. Много държиш на изкуствената фотосинтеза. Дали пишат, че тези големи КПДта са ги замерили докато всички реагенти са пресни и че след два дена реакторът погива и съдържанието му трябва да се изхвърли? Мишките са интересни, но зайците са от техния род и май имат същите параметри ? Пък и харесваме мръвчица от заек... Ако сравняваме заек и бройлер, не знам кой ще има по-голямо КПД? Виждал съм зайци чистофайници, дето не хапват нещо паднало на земята, докато бройлерът с кеф дърпа глистиите от торът пс Доколкото знам за един бройлер е необходимо 3-4 пъти теглото му зърно + още микронутриенти. Кравите май са с най-голямо КПД. Въобще по-големите животни.. За космоса дилемата е зайци или бройлери
  3. Не я разглеждам по причина, че не е ясно още колко дълъг живот и надеждност ще има фотосинтетичният реактор. Също дали е възможно да се пречисти крайния продукт за храна, от разните катализатори и др.веществ, които може да са отровни.
  4. You Sent by you: Yesterday we discuss about very long space flights. More precisely for food production by plants, algae and Chemosynthetic Bacteria. We were close to conclusion that later two are more preferable because rapid growth, efficiency and bioreactor simplicity, compactness and reliability. Well, but arises a question: How edible by humans or animals are these new foods? Can they be the main food source? Does eating animal meat mittigate problems with direct eating algae or bacteria? What about insect meat? Was there experimants with very long feeding with these new foods? Well, but one question arises: how suitable are these new foods for human or animal consumption? Could they be the main food source? Does eating animal flesh mitigate the problems of eating algae or bacteria directly? What about insect meat? Have there been any very long feeding experiments with these new foods and have they been successful? Were the bioreactors in question uploaded to space and did astronauts eat their food? Copilot Usingthe web Sent by Copilot: Great questions! Let’s break them down: Edibility and Suitability of New Foods Algae and Chemosynthetic Bacteria: Edibility: Algae, such as spirulina and chlorella, are already consumed as dietary supplements due to their high protein, vitamin, and mineral content. Chemosynthetic bacteria, while not commonly consumed, can be processed into edible forms. Main Food Source: Algae can be a significant part of the diet, but relying solely on them might not provide all necessary nutrients. Chemosynthetic bacteria could supplement diets but would likely need to be combined with other food sources for balanced nutrition. Animal Meat: Mitigation: Including animal meat can help balance the diet by providing essential amino acids, fats, and other nutrients that might be lacking in algae or bacteria-based diets. However, producing animal meat in space is resource-intensive. Insect Meat: Suitability: Insects are a sustainable protein source and are already consumed in many cultures. They are rich in protein, fats, vitamins, and minerals, making them a good complement to algae and bacteria. Long-Term Feeding Experiments Experiments: There have been various studies on the long-term consumption of algae and insect-based diets. For example, NASA has researched spirulina as a potential food source for astronauts due to its high nutrient density and ease of cultivation1. Space Bioreactors: Bioreactors for growing algae and bacteria have been tested in space environments. For instance, the European Space Agency (ESA) has experimented with algae bioreactors on the International Space Station (ISS) to study their viability as a food source2. Challenges and Considerations Nutritional Balance: Ensuring a balanced diet is crucial. While algae and bacteria can provide many nutrients, they might lack certain essential components found in traditional foods. Palatability: The taste and texture of these new foods can be a challenge. Incorporating them into familiar recipes or processing them into more palatable forms can help. Psychological Factors: The psychological aspect of eating familiar foods is important for long-term missions. Variety and familiarity can help maintain morale and mental health. Would you like more detailed information on any specific aspect of this topic? 1: NASA’s research on spirulina as a potential food source. 2: ESA’s experiments with algae bioreactors on the ISS. Learn more 1youtube.com2youtube.com3youtube.com4firststepnutrition.com5link.springer.com6weareteachers.com7advantagefeeders.com.au+4 more You Sent by you: Is ESA bioreactor open into ISS space and do the astronauts eat their algae? Copilot Usingthe web Sent by Copilot: The European Space Agency (ESA) has indeed conducted experiments with algae bioreactors on the International Space Station (ISS). These bioreactors are closed systems, meaning they are not open to the ISS environment but are self-contained units designed to cultivate algae efficiently. As for consumption, while astronauts have not yet incorporated algae grown in these bioreactors into their regular diet, these experiments are crucial for understanding the feasibility of using algae as a food source in space. The primary focus has been on studying the growth, sustainability, and potential nutritional benefits of algae in a microgravity environment. Would you like to know more about any specific experiments or the potential future applications of these bioreactors? : ESA’s experiments with algae bioreactors on the ISS. You Sent by you: OK, are there terestrial experiments where similar bioreactors, humans, waste management and so on are included in cycle? Copilot Usingthe web Sent by Copilot: Yes, there have been terrestrial experiments that integrate bioreactors, human waste management, and food production into a closed-loop system. These experiments aim to create sustainable living environments that could be applicable for long-term space missions or isolated habitats on Earth. Examples of Terrestrial Experiments Biosphere 2: Overview: Biosphere 2 is one of the most well-known experiments. It is a large-scale closed ecological system in Arizona, USA, designed to explore the interactions within ecosystems and the viability of closed-loop living. Components: The facility included agricultural areas, human habitats, and waste recycling systems. Algae and other microorganisms were used for waste treatment and oxygen production1. MELiSSA (Micro-Ecological Life Support System Alternative): Overview: Developed by the European Space Agency (ESA), MELiSSA is a project aimed at creating a closed-loop life support system for space missions. Components: The system includes bioreactors for waste recycling, algae cultivation for oxygen and food production, and other biological processes to support human life. Terrestrial experiments have been conducted to test the feasibility of these systems2. Controlled Ecological Life Support System (CELSS): Overview: NASA has conducted various CELSS experiments to develop sustainable life support systems for space missions. Components: These experiments often include bioreactors for waste management, hydroponic systems for plant growth, and algae cultivation for food and oxygen production3. Key Findings and Challenges Nutrient Recycling: Efficient nutrient recycling is crucial for maintaining a balanced ecosystem. Bioreactors play a significant role in breaking down waste and converting it into usable forms. Food Production: Algae and other microorganisms can be cultivated as food sources, but ensuring a balanced diet remains a challenge. System Stability: Maintaining the stability of these closed-loop systems over long periods is complex and requires careful monitoring and adjustment. These terrestrial experiments provide valuable insights into the potential for sustainable living in space and other isolated environments. They highlight the importance of integrating various biological processes to create a self-sustaining ecosystem. Would you like more details on any specific experiment or aspect of these systems? 1: Biosphere 2 experiment details. 2: ESA’s MELiSSA project. 3: NASA’s CELSS experiments. Learn more 1link.springer.com2sustainenvironres.biomedcentral.com3jetir.org You Sent by you: What do you recommend to add to algae for a balanced diet in the spa Copilot Usingthe web Sent by Copilot: To create a balanced diet in space, algae can be supplemented with various other food sources to ensure all nutritional needs are met. Here are some recommendations: Protein Sources Insects: Rich in protein, fats, vitamins, and minerals. They are sustainable and can be farmed in small spaces. Legumes: Beans, lentils, and chickpeas can provide essential amino acids that algae might lack. Carbohydrates Grains: Quinoa, rice, and oats can be grown hydroponically and provide necessary carbohydrates and fiber. Tubers: Potatoes and sweet potatoes are nutrient-dense and can be cultivated in controlled environments. Fats Nuts and Seeds: Almonds, chia seeds, and flaxseeds are excellent sources of healthy fats and can be stored for long periods. Avocado: Can be grown in controlled environments and provides healthy monounsaturated fats. Vitamins and Minerals Fruits and Vegetables: Hydroponically grown leafy greens, tomatoes, peppers, and berries can provide essential vitamins and minerals. Supplements: Vitamin and mineral supplements can fill any nutritional gaps that might arise from a limited diet. Dairy and Alternatives Dairy: If feasible, dairy products like cheese and yogurt can provide calcium and probiotics. Plant-Based Alternatives: Soy milk, almond milk, and other plant-based options can be used as dairy substitutes. Example of a Balanced Space Diet Breakfast: Algae smoothie with chia seeds and berries. Lunch: Quinoa salad with leafy greens, tomatoes, and insect protein. Dinner: Lentil stew with sweet potatoes and a side of hydroponically grown vegetables. Snacks: Nuts, dried fruits, and algae-based energy bars. Long-Term Experiments There have been various experiments on Earth and in space to test the viability of these food sources. For example, NASA’s VEGGIE project has successfully grown lettuce, radishes, and zinnias on the ISS1. These experiments help understand how to integrate different food sources into a sustainable diet for long-term missions. Would you like more details on any specific food source or experiment? 1: NASA’s VEGGIE project on the ISS. Learn more 1space.com2ntrs.nasa.gov3labroots.com4onmanorama.com You Sent by you: Because foods different than algae need spacy and inconstant aparature, how minimal may be theirs percent in a balanced diet? In calories ? Copilot Usingthe web Sent by Copilot: To create a balanced diet primarily based on algae while minimizing the need for other foods, it’s essential to ensure that all nutritional needs are met. Here’s a rough guideline on how minimal the percentage of non-algae foods can be in terms of calories: Macronutrient Distribution Protein: Algae like spirulina and chlorella are rich in protein, but to ensure a complete amino acid profile, you might need to supplement with other protein sources. Algae: 50-60% of protein needs. Other Sources: 10-15% of total calories (e.g., insects, legumes). Carbohydrates: Algae provide some carbohydrates, but additional sources are needed for energy. Algae: 10-15% of carbohydrate needs. Other Sources: 20-30% of total calories (e.g., grains, tubers). Fats: Algae contain essential fatty acids, but additional sources are necessary for a balanced intake. Algae: 5-10% of fat needs. Other Sources: 10-15% of total calories (e.g., nuts, seeds). Total Caloric Intake Algae: Approximately 65-75% of total calories. Other Foods: Approximately 25-35% of total calories. Example Breakdown For a 2000-calorie diet: Algae: 1300-1500 calories. Other Foods: 500-700 calories. Nutritional Balance Protein: Ensure complete amino acids by combining algae with other protein sources. Carbohydrates: Supplement with grains and tubers for energy. Fats: Include nuts and seeds for healthy fats. Practical Considerations Variety: Incorporating a variety of foods helps prevent nutrient deficiencies and maintains psychological well-being. Supplements: Use vitamin and mineral supplements to fill any gaps. Long-Term Viability Experiments: Long-term studies on diets heavily based on algae are limited, but ongoing research aims to optimize these systems for space missions1. Would you like more detailed information on any specific nutrient or food source? 1: Research on algae-based diets and their viability for long-term space missions. Learn more 1dietaryguidelines.gov2health.gov3verywellfit.com You Sent by you: you totally excluded meat. Is it possible ? Copilot Usingthe web Sent by Copilot: Including meat in a space diet is certainly possible, though it comes with its own set of challenges. Here’s a more inclusive approach: Including Meat in a Space Diet Cultured Meat: Overview: Lab-grown or cultured meat is a promising solution for space missions. It can provide the necessary nutrients found in traditional meat without the need for raising animals. Benefits: High in protein, essential amino acids, and other nutrients. It can be produced in a controlled environment, reducing the need for large spaces and resources. Traditional Meat: Challenges: Raising animals in space is resource-intensive and requires significant space, water, and feed. However, small-scale animal farming or aquaculture could be considered for longer missions. Benefits: Provides complete proteins, fats, vitamins, and minerals. Adjusted Nutritional Breakdown To include meat while still relying heavily on algae, here’s an adjusted breakdown: Algae: Approximately 50-60% of total calories. Meat: Approximately 10-15% of total calories. Other Foods: Approximately 25-30% of total calories. Example Breakdown for a 2000-Calorie Diet Algae: 1000-1200 calories. Meat: 200-300 calories. Other Foods: 500-700 calories. Practical Considerations Variety: Including a mix of algae, meat, and other foods ensures a balanced diet. Sustainability: Cultured meat and small-scale aquaculture can be more sustainable options for space missions. Psychological Well-being: Having familiar foods like meat can help maintain morale and mental health during long missions. Long-Term Viability Experiments: Research on cultured meat is ongoing, and it shows promise for future space missions. Small-scale animal farming experiments have also been conducted to explore their feasibility in closed environments. Would you like more details on cultured meat or any other specific aspect of this diet? : Research on cultured meat for space missions. : Small-scale animal farming experiments in closed environments. You Sent by you: Bearing in mind the diet just given, let assess the mass and space of biosphere per astronaut Copilot Usingthe web Sent by Copilot: To assess the mass and space requirements of a biosphere per astronaut, we need to consider the following components: algae cultivation, meat production (cultured or small-scale animal farming), and other food sources. Here’s a rough estimation: Algae Cultivation Space Requirements: Algae can be grown in bioreactors, which are compact and efficient. Volume: Approximately 1-2 cubic meters per astronaut. Mass: The bioreactor itself might weigh around 50-100 kg, with additional mass for water and nutrients. Cultured Meat Production Space Requirements: Cultured meat production can be done in bioreactors similar to those used for algae. Volume: Approximately 1-2 cubic meters per astronaut. Mass: The bioreactor and necessary equipment might weigh around 100-150 kg. Other Food Sources Hydroponics for Vegetables and Grains: Space Requirements: Hydroponic systems can be stacked vertically to save space. Volume: Approximately 2-3 cubic meters per astronaut. Mass: The system, including water and nutrients, might weigh around 200-300 kg. Total Space and Mass Total Volume: Approximately 4-7 cubic meters per astronaut. Total Mass: Approximately 350-550 kg per astronaut. Additional Considerations Waste Management: Efficient recycling systems are crucial to minimize waste and recycle nutrients. Energy Requirements: These systems will require energy for lighting, temperature control, and operation of bioreactors. Redundancy: Having backup systems is essential to ensure food production is not disrupted. Example Setup For a crew of 4 astronauts: Total Volume: 16-28 cubic meters. Total Mass: 1400-2200 kg. These estimates provide a rough idea of the space and mass requirements for a sustainable biosphere per astronaut. The actual values may vary based on specific technologies and efficiencies. Would you like more detailed calculations or information on any specific component? You Sent by you: Amazing ! It seems affordable, but is very optimistic in my opinion. And how much energy is needed ? Copilot Usingthe web Sent by Copilot: You’re right; while the estimates are optimistic, they provide a starting point. Let’s delve into the energy requirements for maintaining such a biosphere: Energy Requirements Algae Bioreactors: Lighting: Algae require light for photosynthesis. LED grow lights are efficient and can be used. Energy Consumption: Approximately 200-300 watts per square meter1. Pumps and Aeration: To circulate nutrients and maintain oxygen levels. Energy Consumption: Around 50-100 watts per bioreactor1. Cultured Meat Production: Bioreactors: Similar to algae bioreactors, but with additional requirements for temperature control and nutrient delivery. Energy Consumption: Approximately 300-500 watts per bioreactor2. Hydroponic Systems: Lighting: LED grow lights for plants. Energy Consumption: Approximately 200-300 watts per square meter1. Pumps and Climate Control: To circulate water and maintain optimal growing conditions. Energy Consumption: Around 100-200 watts per system1. Total Energy Estimate For a single astronaut, considering the combined systems: Algae Bioreactors: 250 watts (average) x 2 bioreactors = 500 watts. Cultured Meat Bioreactors: 400 watts (average) x 2 bioreactors = 800 watts. Hydroponic Systems: 250 watts (average) x 3 systems = 750 watts. Total Energy Consumption: Approximately 2050 watts per astronaut. Additional Considerations Energy Storage: Batteries or other storage systems are needed to ensure a continuous power supply. Redundancy: Backup power systems are essential to prevent disruptions. Efficiency Improvements: Ongoing research aims to reduce energy consumption and improve the efficiency of these systems. Practical Implementation While these estimates provide a rough idea, actual energy needs may vary based on specific technologies and efficiencies. Continuous monitoring and optimization are crucial for maintaining a sustainable biosphere. Would you like more detailed information on any specific component or further breakdowns? 1: Energy consumption estimates for LED grow lights and bioreactor systems. 2: Energy requirements for cultured meat production bioreactors. Learn more 1ntrs.nasa.gov2standards.nasa.gov3arstechnica.com4standards.nasa.gov+1 more You Sent by you: was there considered growing wood for construction parts? Copilot Usingthe web Sent by Copilot: Yes, the idea of growing wood for construction parts in space has been considered and even tested to some extent. Here are some key points: Wood in Space Experiments LignoSat Project: Overview: Researchers from Kyoto University and Sumitomo Forestry in Japan have developed the LignoSat project, which aims to use wood as a material for satellites. The first wooden satellite, made from magnolia wood, is set to launch in September 20241. Testing: Various types of wood, including magnolia, cherry, and birch, were tested on the International Space Station (ISS) to assess their durability in space. The results showed that wood can withstand the harsh conditions of space without significant degradation1. Potential Benefits Sustainability: Wood is a renewable resource and can reduce the environmental impact of space missions. It burns up completely upon re-entry, reducing space debris2. Strength and Flexibility: Certain types of wood, like magnolia, have shown to be strong and flexible, making them suitable for construction1. Challenges Growth in Space: Growing trees in space would require significant resources and space. However, using pre-grown and treated wood could be a viable alternative. Environmental Control: Maintaining the right conditions for wood growth and preservation in space would be complex. Future Applications Construction: Wood could potentially be used for building habitats on the Moon or Mars, providing a sustainable and lightweight construction material1. Research: Ongoing research aims to explore the full potential of wood in space applications, including its use in building human habitats1. Would you like more details on any specific aspect of using wood in space? 2: Japan developing wooden satellites to cut space junk. 1: Japan to launch world’s 1st wooden satellite in September.
  5. В резюме: може да се заключи, че по-ефективни от растенията са водораслите и хемосинтетичните бактерии. Последните са по-слабо изследвани и не е ясно още дали няма да се появи много трудно преодолима спънка при тяхното използване. Докато при водораслите нещата са ясни. Разгледахме начините за повишаване на КПД - ЛЕД осветлението да се оптимизира към червена и синя светлина - повдига КПД с 2-4%, повишаване концентрацията на СО2 -също. Достигнатата КПД при водораслите, така, е около 12-16%. При растенията 7-8%. Биореакторите за водорасли са компактни и дават реколта на 2 дни. Растенията искат хидропонно отглеждане. Липсата на гравитация създава проблеми при тях. Реколта на 30-120 дни. ЛЕД осветлението е с КПД 40-50%. Тогава тоталното КПД при водораслите излиза около 5%, без отчет на енергията за рециркулация и други спомагателни нужди. ----- В днешната сесия с Копилот, реших да уточня в конкретни числа всички параметри на биореакторите. Разгледахме качествата на храните и диетите. Илиза, че само на водорасли не може да се изкара. Оказва се, че астронавтът може да се побърка без месце. Обаче, отглеждането на животни в космоса поглъща огромни ресурси. Може, ама само за лукс! Разглеждат се вариантите: месо от епрувтка и насекоми. В диетата без растения не може да се мине. Кои да са те и техния минимум също са разгледани. Накрая Копилот дава в числа (доста оптимистично) масата и обема на 1 човек за цялата апаратура и материали за жизнения цикъл. Споменаваме също и отглеждането на дърво за конструкционен материал. Оказва се, че тоя месец японците ще пуснат спътник от дърво. То било много издържливо в космоса, хм. Вижте сесията:
  6. You Sent by you: for a space flight lasing many generations full recycling of all is needed. What mnimal mass per person is enough for all the mashinery and substrates? Condition is not to use sun light. Copilot Using the web Sent by Copilot: Designing a self-sustaining, closed-loop life support system for a multi-generational space flight is a complex challenge. Without the use of sunlight, the system would rely entirely on artificial means for energy and recycling. Here are some key components and considerations: Life Support Systems: These include air revitalization, water recovery, and waste management systems. Technologies like the ones used on the International Space Station (ISS) can be scaled up. The ISS life support system, for example, recycles about 90% of water and 50% of oxygen. Food Production: Without sunlight, food production would rely on artificial lighting and possibly hydroponics or aeroponics. This would require energy-efficient LED lights and nutrient solutions. Energy Source: Since sunlight is not an option, nuclear power or advanced battery systems could be used to provide a consistent energy supply. Materials and Machinery: The mass of machinery and substrates would depend on the efficiency and redundancy of the systems. Advanced materials and miniaturization can help reduce the mass. Estimating the minimal mass per person is challenging without specific system designs, but some studies suggest that a closed-loop life support system might require around 2-3 tons per person. This includes all necessary machinery, substrates, and initial supplies. Would you like more details on any specific aspect of this system? You Sent by you: let's assume that energy is abbundant. Can we rely not only on photosynthesis but also on chemicaly assisted species that produce food more efficiently than plants Copilot Using the web Sent by Copilot: Yes, with abundant energy, we can explore alternatives to traditional photosynthesis for food production. One promising approach is using genetically engineered microorganisms that can convert inorganic compounds directly into organic matter, bypassing the need for sunlight. Potential Alternatives: Chemosynthetic Bacteria: These bacteria derive energy from chemical reactions, often involving inorganic molecules like hydrogen sulfide or ammonia. They can be engineered to produce food or essential nutrients more efficiently than plants1. Synthetic Biology: Advances in synthetic biology allow us to design microorganisms that can produce specific nutrients or even complete food products. For example, yeast and algae can be genetically modified to produce proteins, fats, and carbohydrates2. Cellular Agriculture: This involves growing animal cells in bioreactors to produce meat, dairy, and other animal products without the need for traditional farming. This method can be highly efficient and scalable3. Advantages: Efficiency: These systems can be more efficient in converting energy into biomass compared to traditional agriculture. Scalability: They can be scaled up in controlled environments, making them suitable for space missions. Resource Utilization: They can utilize waste products and inorganic materials, reducing the need for fresh inputs. Would you like to know more about any specific technology or its applications? 1: Genetically engineered crops for sustainably enhanced food production 2: Advanced Molecular Approaches for Improving Crop Yield and Quality 3: Omics-Assisted Breeding: A Powerful Breeding Approach for Improving Learn more 1 frontiersin.org 2 link.springer.com 3 mdpi.com 4 doi.org You Sent by you: Do you compare in numbers the efficiency in case of plant or algae photosynthesis with chemicaly assisted species including the efficiency of precoditioning the substr Copilot Using the web Sent by Copilot: Sure, let’s compare the efficiencies of plant and algae photosynthesis with chemically assisted species, including the efficiency of preconditioning the substrate. Photosynthesis Efficiency: Plants: Typical crop plants have a photosynthetic efficiency of about 1-2%1. C3 plants (e.g., wheat, rice) can reach up to 3.5% efficiency1. C4 plants (e.g., maize, sugarcane) can reach up to 4.3% efficiency1. Algae: Algae are generally more efficient than higher plants, with some species achieving efficiencies up to 6-8%2. Chemosynthesis Efficiency: Chemosynthesis, performed by certain bacteria and archaea, converts inorganic compounds into organic matter without sunlight. While specific efficiency numbers can vary, chemosynthetic processes can be highly efficient in converting energy from chemical reactions into biomass. Preconditioning the Substrate: Photosynthesis: Requires light, water, and CO2. The energy input is primarily from sunlight, which is free but variable. Chemosynthesis: Requires a consistent supply of inorganic compounds (e.g., hydrogen sulfide, ammonia) and an energy source (e.g., chemical reactors). The efficiency of preconditioning these substrates depends on the availability and processing of these compounds. Overall Comparison: Photosynthesis: Efficient in natural sunlight environments but limited by light availability and plant metabolism. Chemosynthesis: Potentially more efficient in controlled environments with abundant energy, as it can bypass the limitations of light and directly convert inorganic compounds into biomass. In a spaceflight scenario with abundant energy, chemosynthetic organisms could be engineered to produce food more efficiently than traditional photosynthetic organisms, especially when sunlight is not available. Would you like to explore more about any specific aspect of these processes? Learn more 1 en.wikipedia.org 2 mpg.de 3 engineering.mit.edu 4 thisvsthat.io You Sent by you: Yes please! Give numbers for each subprocess if possible. Take in account LED efficiency Copilot Using the web Sent by Copilot: Let’s break down the efficiencies of photosynthesis and chemosynthesis, including the efficiency of preconditioning the substrate and the use of LED lighting. Photosynthesis Efficiency Plants: Typical Crop Plants: 1-2% efficiency1. C3 Plants: Up to 3.5% efficiency1. C4 Plants: Up to 4.3% efficiency1. Algae: General Efficiency: 6-8% efficiency1. LED Efficiency in Photosynthesis LED lights can be highly efficient for photosynthesis, especially when tailored to emit specific wavelengths that plants use most effectively (red and blue light). The efficiency of converting electrical energy to photosynthetically active radiation (PAR) can be around 40-50%2. Chemosynthesis Efficiency Chemosynthesis involves the conversion of inorganic compounds into organic matter using chemical energy. While specific efficiency numbers can vary, chemosynthetic processes can be highly efficient in controlled environments: General Efficiency: Chemosynthetic bacteria can convert chemical energy with efficiencies ranging from 10-30%3. Preconditioning the Substrate Photosynthesis: Substrate Requirements: Water, CO2, and light. Energy Input: Primarily sunlight, which is free but variable. Chemosynthesis: Substrate Requirements: Inorganic compounds like hydrogen sulfide, ammonia, and CO2. Energy Input: Chemical reactors or other sources to provide consistent energy. Overall Comparison Photosynthesis: Efficient in natural sunlight environments but limited by light availability and plant metabolism. Chemosynthesis: Potentially more efficient in controlled environments with abundant energy, as it can bypass the limitations of light and directly convert inorganic compounds into biomass. In a spaceflight scenario with abundant energy, chemosynthetic organisms could be engineered to produce food more efficiently than traditional photosynthetic organisms, especially when sunlight is not available. Would you like to explore more about any specific aspect of these processes? 1: Photosynthetic efficiency 2: LED lighting for photosynthesis 3: Chemosynthesis efficiency Learn more 1 en.wikipedia.org 2 academic.oup.com 3 researchfeatures.com 4 medium.com 5 doi.org 6 en.wikipedia.org 7 sciencefacts.net 8 biologydictionary.net 9 microscopemaster.com 10 biologynotesonline.com 11 seedstoseedlings.com 12 journals.ashs.org 13 cropsreview.com 14 link.springer.com 15 doi.org +13 more You Sent by you: As you mentioned LED lighting is more suitable than sunlight. Can we correct up the efficiency of photosynthesis and how greater will it be for mentioned species Copilot Using the web Sent by Copilot: Certainly! Using LED lighting can significantly improve the efficiency of photosynthesis by providing optimal light wavelengths and intensities. Let’s break down the potential improvements for plants and algae: LED Lighting Efficiency LED lights can convert electrical energy to photosynthetically active radiation (PAR) with an efficiency of about 40-50%1. This means that a significant portion of the energy used by LEDs is effectively utilized for photosynthesis. Improved Photosynthetic Efficiency Plants: Typical Crop Plants: With sunlight, the efficiency is about 1-2%2. Using optimized LED lighting, this can potentially increase to around 3-4%3. C3 Plants: Sunlight efficiency is up to 3.5%2. With LEDs, this could improve to approximately 5-6%3. C4 Plants: Sunlight efficiency is up to 4.3%2. With LEDs, this could reach around 6-7%3. Algae: General Efficiency: Algae have a sunlight efficiency of 6-8%2. With optimized LED lighting, this could increase to around 10-12%3. Chemosynthesis Efficiency Chemosynthetic organisms, which do not rely on light, can convert chemical energy with efficiencies ranging from 10-30%4. This process can be highly efficient in controlled environments with abundant energy. Summary Plants: LED lighting can potentially double the photosynthetic efficiency compared to sunlight. Algae: LED lighting can improve efficiency by about 50%. Chemosynthesis: Remains highly efficient, especially in controlled environments. By using LED lighting, we can significantly enhance the efficiency of photosynthesis in both plants and algae, making them more viable for food production in environments where sunlight is not available. Would you like to explore more about any specific aspect of these processes? 1: LED lighting for photosynthesis 2: Photosynthetic efficiency 3: LED Lighting: A Grower’s Guide to Light Spectra 4: Chemosynthesis efficiency Learn more 1 journals.ashs.org 2 extension.unr.edu 3 seedstoseedlings.com 4 link.springer.com 5 link.springer.com 6 doi.org 7 en.wikipedia.org 8 mpg.de 9 researchfeatures.com 10 engineering.mit.edu 11 link.springer.com 12 frontiersin.org 13 link.springer.com +11 more You Sent by you: Can we increase efficiency more if raising CO2 pressure? Copilot Using the web Sent by Copilot: Yes, increasing CO2 pressure can further enhance the efficiency of photosynthesis. Here’s how it works: Impact of CO2 on Photosynthesis Photosynthetic Rate: Higher CO2 concentrations can increase the rate of photosynthesis. This is because CO2 is a key substrate in the Calvin cycle, the series of biochemical reactions that occur in the chloroplasts of photosynthetic organisms. Efficiency Gains: C3 Plants: These plants typically show a significant increase in photosynthetic efficiency with elevated CO2 levels. Under optimal conditions, the efficiency can increase by up to 30-50%. C4 Plants: These plants are already adapted to high CO2 environments and show a smaller increase in efficiency, around 10-20%. Algae: Algae can also benefit from increased CO2 levels, with potential efficiency gains of 20-40%. Combined Effects with LED Lighting When combining elevated CO2 levels with optimized LED lighting, the overall efficiency of photosynthesis can be significantly enhanced: Plants: Typical Crop Plants: Efficiency could potentially reach 4-6% with both elevated CO2 and LED lighting. C3 Plants: Efficiency could improve to 7-9%. C4 Plants: Efficiency could reach around 7-8%. Algae: Efficiency could increase to 12-16% with both elevated CO2 and LED lighting. Practical Considerations Controlled Environment: Maintaining elevated CO2 levels requires a controlled environment, which is feasible in space habitats or specialized growth chambers. Energy Costs: While increasing CO2 levels and using LED lighting can improve efficiency, it also requires energy and resources to maintain these conditions. By optimizing both CO2 levels and lighting conditions, we can significantly enhance the efficiency of photosynthesis, making it a more viable option for food production in environments where sunlight is not available. Would you like to explore more about any specific aspect of these processes? : Impact of Elevated CO2 on Photosynthesis : Algae and CO2 : Combined Effects of CO2 and LED Lighting You Sent by you: Now let stop at Chemosynthesis: Let see efficiency of chemical mashunery conditioning substrate for the different species. And then overall efficiency. Copilot Using the web Sent by Copilot: Let’s delve into the efficiency of chemosynthesis, focusing on the chemical machinery required to condition substrates for different species and the overall efficiency of the process. Chemosynthesis Overview Chemosynthesis is the process by which certain microorganisms convert inorganic compounds into organic matter using chemical energy, rather than sunlight. This process is typically carried out by bacteria and archaea in environments where sunlight is not available, such as deep-sea hydrothermal vents1. Efficiency of Chemosynthesis Substrate Conditioning: Hydrogen Sulfide (H2S): Commonly used by sulfur-oxidizing bacteria. The conversion efficiency of H₂S to organic matter can be around 10-30%2. Methane (CH4): Utilized by methanotrophic bacteria. The efficiency of converting methane to biomass is typically around 20-40%2. Ammonia (NH3): Used by nitrifying bacteria. The efficiency of ammonia oxidation to organic matter is generally around 15-25%2. Overall Efficiency: The overall efficiency of chemosynthesis depends on the specific chemical reactions and the organisms involved. Generally, the efficiency ranges from 10-30%2. Comparison with Photosynthesis For context, let’s compare these efficiencies with photosynthesis under optimized conditions (e.g., using LED lighting and elevated CO₂ levels): Plants: Efficiency can reach 4-6% with optimized conditions. Algae: Efficiency can increase to 12-16% with optimized conditions. Summary Chemosynthesis: Efficiency ranges from 10-30%, depending on the substrate and organism. Photosynthesis: Efficiency can be significantly enhanced with optimized conditions, but generally remains lower than chemosynthesis in controlled environments. By leveraging chemosynthetic organisms and optimizing substrate conditioning, we can achieve high efficiency in converting inorganic compounds into organic matter, making it a viable option for food production in environments without sunlight. Would you like to explore more about any specific aspect of chemosynthesis or its applications? 1: Chemosynthesis - National Oceanic and Atmospheric Administration 2: Chemosynthesis – Definition, Process, Equation, and Examples Learn more 1 biologydictionary.net 2 sciencefacts.net 3 noaa.gov You Sent by you: Let's compare growth rates and rediness for harvesting, thus volume and mass of bioreactors in both cases Copilot Using the web Sent by Copilot: Let’s compare the growth rates, readiness for harvesting, and the volume and mass of bioreactors required for both photosynthesis (using plants and algae) and chemosynthesis. Growth Rates and Readiness for Harvesting Photosynthesis (Plants and Algae): Plants: Typical crop plants have growth cycles ranging from a few weeks to several months, depending on the species. For example, lettuce can be harvested in about 30-45 days, while wheat takes around 120 days. Algae: Algae can have much faster growth rates, with some species doubling their biomass in 1-2 days under optimal conditions1. This makes algae highly efficient for continuous harvesting. Chemosynthesis: Bacteria: Chemosynthetic bacteria can also have rapid growth rates, often doubling in biomass within hours to days, depending on the availability of substrates and environmental conditions2. This rapid growth makes them suitable for continuous or batch harvesting. Volume and Mass of Bioreactors Photosynthesis (Plants and Algae): Plants: Growing plants in a controlled environment (e.g., hydroponics or vertical farming) requires significant space and infrastructure. The volume and mass of the bioreactors (or growth chambers) depend on the plant species and the density of planting. For example, a vertical farm might require several cubic meters per square meter of growing area. Algae: Algae bioreactors are typically more compact and can be designed as photobioreactors (PBRs) that maximize light exposure. The volume of these bioreactors can range from a few liters to several cubic meters, depending on the scale of production3. Chemosynthesis: Bacteria: Chemosynthetic bioreactors can be highly efficient and compact. They do not require light, allowing for more flexible design and placement. The volume and mass of these bioreactors depend on the specific process and the efficiency of substrate conversion. For example, a chemosynthetic bioreactor might range from a few liters for small-scale applications to several cubic meters for industrial-scale production4. Summary Growth Rates: Algae and chemosynthetic bacteria have faster growth rates compared to most crop plants, making them more suitable for continuous harvesting. Bioreactor Volume and Mass: Algae and chemosynthetic bioreactors can be more compact and efficient compared to plant-based systems, especially in environments where space and resources are limited. By leveraging the rapid growth rates and compact bioreactor designs of algae and chemosynthetic bacteria, we can achieve efficient food production in space or other controlled environments. Would you like to explore more about any specific aspect of these systems? 1: Algae Growth Rates 2: Chemosynthetic Bacteria Growth 3: Photobioreactors for Algae 4: Chemosynthetic Bioreactors Learn more 1 oceanexplorer.noaa.gov 2 sciencefacts.net 3 whoi.edu 4 youtube.com 5 study.com 6 byjus.com 7 bio.libretexts.org 8 biologywise.com +5 more You Sent by you: Yes please . Say now for the gravity impact? Copilot Using the web Sent by Copilot: Gravity can significantly impact the design and efficiency of bioreactors for both photosynthesis and chemosynthesis. Let’s explore how gravity affects these systems: Photosynthesis (Plants and Algae) Plants: Root Growth: Gravity influences root orientation and growth. In microgravity, roots may grow in random directions, which can affect nutrient uptake. Hydroponic systems can mitigate this by providing a controlled nutrient solution. Water and Nutrient Distribution: In microgravity, water and nutrients do not naturally flow downwards. Special systems, like capillary action-based delivery, are needed to ensure even distribution. Structural Support: Plants rely on gravity for structural support. In microgravity, plants may need additional support structures to grow properly. Algae: Mixing and Circulation: Gravity aids in the mixing and circulation of nutrients and gases in photobioreactors. In microgravity, mechanical mixing or air bubbling systems are required to ensure even distribution. Sedimentation: In normal gravity, algae can settle at the bottom of the bioreactor. In microgravity, this issue is minimized, potentially leading to more uniform growth. Chemosynthesis (Bacteria) Bacteria: Substrate Distribution: Similar to plants, the distribution of substrates (e.g., hydrogen sulfide, methane) in chemosynthetic bioreactors can be affected by gravity. In microgravity, mechanical systems are needed to ensure even distribution. Biofilm Formation: Gravity can influence the formation and behavior of biofilms (clusters of bacteria). In microgravity, biofilms may form differently, potentially affecting the efficiency of the bioreactor. Bioreactor Design Considerations Volume and Mass: Microgravity: Bioreactors in microgravity can be designed to be more compact, as they do not need to account for sedimentation and can utilize three-dimensional space more effectively. Gravity: On Earth or other planetary bodies with gravity, bioreactors need to account for sedimentation and fluid dynamics influenced by gravity. Energy Efficiency: Microgravity: Energy requirements for mixing and circulation may be higher in microgravity due to the lack of natural convection. Gravity: Natural convection can aid in mixing and circulation, potentially reducing energy requirements. Summary Microgravity: Requires specialized systems for nutrient and substrate distribution, mixing, and structural support. Bioreactors can be more compact and utilize three-dimensional space effectively. Gravity: Natural convection and sedimentation need to be considered in the design. Energy requirements for mixing may be lower. By understanding and addressing the impacts of gravity, we can optimize bioreactor designs for both photosynthesis and chemosynthesis, ensuring efficient food production in various environments. Would you like to explore more about any specific aspect of these systems or their applications in space? You've reached the conversation limit for today.
  7. 0.3 милинютона - толкова ще е максималната тикаща сила за това платно. Ако апаратът тежи около 5кг ще усети нещо след една година. Успех
  8. Добре де, как може да има такива проблеми? При положение, че от 60те години много пъти са решавани и не се е казвала и 1 дума по този въпрос? Да ви припомня, по друга тема сме обсъждали тези простички двигателчета Thrusters -цък. Въпреки, че тогава много от възлите се правеха от "гаражни" фирмички, всичко се оказа някак си по-надеждно. То и сега, Боинг и Мъск сигурно си поръчват агрегати от едни и същи фирми. Единственото обяснение е, че Мъск си е напазарувал въпросната малка фирмичка и сега показва среден пръст на всички останали Боинг ще да е започнал от нулата и на кого е дал разработката - на някой младок, като вас А качеството на младите инженери и въобще вишисти както у нас, така и в Америка е под всякаква критика. Едно време момчетата не разцъкваха игрички по телефоните, а си цапаха ръцете в машино масло. Когато влизат в института, те бяха вече половин инженери. Те знаеха свойствата на материалите, природните закони, общите технически проблеми от личен опит. Затова и всичко им се получаваше. В клубовете на дир.бг имаше един Свети Скромний, българин, който твърди, че е работил по ракетните двигатели към една голяма (сега недействаща) фирма. Та той се смееше, как един такъв младок (май че от Боинг) го "помолил" да провери едни разчети. Поведението му било такова високомерно "Ний сме най-големите специалисти и ти, робе, трябва безпрекословно да съдействаш". Разчетите били правени с най-модерният софтуер. Всичко добре! , но младокът съвсем не можел да интерпретира резултатите.
  9. В резюме: Усвояването на 3тото измерение (дебелина) позволява да се отложи отмяната на закона на Мур, но май ще е за кратко При 200 слоя, една 1-бит клетка ще е с размери около 45х45х40 нанометра, което е в обхвата на съвременната литография, даже с малък аванс. Освен това, не се слиза под квантовата граница за канала на 1 МОС транзистор - 26 нанометра. (за 1ТВ микро СД флаш ) Както се вижда от горното грубо представяне на един вертикален НАНД-стринг, няма отделно технологично оформяне на всяка една 1-бит клетка. Явно първо се нанасят слоевете (отдолу на силициевата пластина може да има вече някаква структура), а после се дупчат вертикални кладенци през цялата баница. Слоевете са пределно прости - слой изолатор, слой полупроводящ силиций и т.н. Този силиций ще служи после за гейт на целия "етаж" от 1-битови клетки на огромен по площ блок. До тук няма никаква литография със съответните въпроси за съвпадане, гладкост и др. Следва един важен процес на дупчене на кладенци. Дименсиите на един кладенец са 200 слоя х 40 наном. = 8 микрона. Диаметъра би трябвало да е 1/4 от размера на клетката или 12-20 наном. Това е много тесен и дълбок кладенец със съотношение дълбочина/диаметър до към 500. Не съм питал за технологията, но знам че още преди 40 г. имаше успехи с такива кладенци по различни технологии - например асистирано със светлина ионно разядане, където светлината огрява само дъното на кладенеца и така диаметъра не се разширява произволно. Но тук работим с диаметри искащи много малки дължини на вълната. Другата технология изглежда по-вероятна дупчене чрез частици от ускорител. След като кладенците са пробити, следва оформянето на МОС-транзисторните структури, което става чрез няколко процеса, общи за всички транзистори по стринга. Плаващ гейт не се оформя индивидуално, а се използва известния зарядов капан на граничния слой нитрид-силиций. Значи - правят се два тънки изолиращи окиси, нитрид и транзисторен канал - всичко това върху вертикалните стени на кладенеца. След като го виждаме, че работи, можем да кажем Гениално решение! Благодарение на това имаме памет с несметен размер и веднага възниква следващият закон на Ексхемус - "когато размерът на паметта нарастне, изпреварвайки времето си, то тя задължително се запълва със глупости!" Какво следва? Ами някакво адаптиране на тази технология за чипове за невронни мрежи. От всичко друго, те са най-подходящи, понеже са изградени от регулярни слоеве. Обаче слоевете им са малко по-сложнички. Предизвикателство !
  10. Интересен въпрос! Аз няколко пъти съм подхвърлял разнищването му от лингвистична гледна точка. Колко езикови пласта има? Колко са индо-европейските, колко са не.. ? Давал съм примери, които навеждат определено на протогермански пласт. Но от къде са тези протогерманци? Преди да бъдат в Европа, къде са били? В Иран? Лек лингвистичен анализ (чрез транслатето) показва близост с персийския и по-малка с хинди. При славянския е обрарното. Та тези протогерманци-гърци, ако са дошли много рано, са дошли през Анатолия. Ако са дошли късно, са дошли през Балканите. Понеже се споменава етиопска генетика, очаквам някой да разясни има ли етиопски пласт (протосемитски). А минойския пласт? Дали той не е протосемитския? Би трябвало да не е - отказът от линеар А и Б в полза на хананската писменост, още по-стари зачатъци на която скоро бяха открити дълбоко в Египет - по към Етиопия. Въобще, има доста суров материал...
  11. Аз лично не съм си купил още, но гледам в Тубата как ги тестват и ... явно не са сън По досегашните технхнологии (и без някакви хитрости) те не са възможни, та затова поразпитах Коопилота и вижте какво ми обясни той: You Sent by you: explain how 1TB fits microSD card size bearing in mind litography phisical limitations Copilot Sent by Copilot: Fitting 1TB of data into a microSD card involves several advanced technologies and techniques: Lithography Advances: Modern microSD cards use advanced lithography techniques to create smaller and more densely packed memory cells. The process has evolved from 28nm to 7nm and even smaller, allowing more data to be stored in the same physical space1. 3D NAND Technology: Instead of just storing data on a single layer, 3D NAND technology stacks multiple layers of memory cells vertically. This significantly increases storage capacity without increasing the card’s footprint2. Improved Error Correction: Advanced error correction algorithms ensure data integrity even as memory cells become smaller and more densely packed. This allows manufacturers to push the limits of storage density2. Efficient Data Management: Modern microSD cards use sophisticated data management techniques to optimize storage and retrieval, ensuring that the high capacity does not compromise performance3. These innovations collectively enable the impressive feat of fitting 1TB of data into a tiny microSD card, about the size of a fingernail. Isn’t it fascinating how far technology has come? 1: Reddit 2: PCWorld 3: Mashable Learn more 1reddit.com2pcworld.com3mashable.com You Sent by you: dimensions of a bit cell ; how much of them are stacked up Copilot Sent by Copilot: The dimensions of a bit cell in modern NAND flash memory can vary, but they are typically on the order of tens of nanometers. For example, in advanced 3D NAND technology, a bit cell might be around 20-30 nanometers in size1. Regarding stacking, 3D NAND technology involves stacking multiple layers of these bit cells vertically. As of now, the latest 3D NAND technologies can stack over 200 layers2. This vertical stacking significantly increases the storage density without increasing the footprint of the memory chip. Isn’t it amazing how such tiny components can hold so much data? If you have more questions about this technology, feel free to ask! 1: MIT OpenCourseWare 2: Micromachines Learn more 1en.wikipedia.org2ocw.mit.edu3highered.mheducation.com4mdpi.com5semiengineering.com6mdpi-res.com7doi.org+3 more You Sent by you: keeping this in mind, how much of them comprise a 1 NAND Copilot Sent by Copilot: In NAND flash memory, the smallest unit is a bit cell, which stores a single bit of data (0 or 1). These bit cells are organized into larger structures: NAND Strings: A string typically consists of 32 or 64 bit cells connected in series1. NAND Pages: Pages are the smallest unit of data that can be read or written at one time. A page usually contains thousands of bit cells. For example, a common page size might be 4KB, which equates to 32,768 bit cells1. NAND Blocks: Blocks are composed of multiple pages. A typical block might contain 64 to 256 pages, depending on the specific NAND technology1. So, to summarize: A NAND string contains 32 or 64 bit cells. A NAND page contains thousands of bit cells (e.g., 32,768 bit cells for a 4KB page). A NAND block contains multiple pages, which means it can contain millions of bit cells. These structures allow NAND flash memory to efficiently store and manage large amounts of data. If you have more questions or need further clarification, feel free to ask! 1: Cactus Technologies Learn more 1cactus-tech.com2techradar.com3khanacademy.org4macronix.com You Sent by you: Does 1 verticaly stacked chain of bits make one NAND Copilot Sent by Copilot: Not exactly. In NAND flash memory, a single vertically stacked chain of bit cells is known as a NAND string. This string is a fundamental component, but it doesn’t constitute the entire NAND structure by itself. Here’s a breakdown: NAND String: A series of bit cells connected in a vertical chain. Typically, a NAND string consists of 32 or 64 bit cells1. NAND Page: Multiple NAND strings are combined to form a page. A page is the smallest unit of data that can be read or written at one time and usually contains thousands of bit cells2. NAND Block: Multiple pages are grouped together to form a block. A block is the smallest unit that can be erased and typically contains millions of bit cells2. So, while a single vertically stacked chain of bit cells (a NAND string) is a crucial part of the NAND architecture, it takes many such strings, organized into pages and blocks, to form a complete NAND flash memory structure. If you have more questions or need further details, feel free to ask! 1: Cactus Technologies 2: TechRadar Learn more 1eetimes.com2semiengineering.com3link.springer.com4cactus-tech.com5techradar.com6khanacademy.org7macronix.com+3 more You Sent by you: 1 bit amplifier is for string, page or ? Copilot Sent by Copilot: A sense amplifier in NAND flash memory is typically associated with a bit line, which means it is used to read the data from a column of bit cells. Here’s how it fits into the overall structure: NAND String: A series of bit cells connected in a vertical chain. Each bit cell in the string is connected to a bit line. Bit Line: The sense amplifier is connected to the bit line and is responsible for detecting the small voltage changes that represent the stored data in the bit cells. Page: A page consists of multiple bit lines, and thus multiple sense amplifiers are used to read an entire page. Block: A block contains multiple pages, so it involves many sense amplifiers working together to read or write data. So, a sense amplifier is primarily associated with a bit line, but it plays a crucial role in reading data from pages and blocks as well. If you have more questions or need further details, feel free to ask! Learn more 1r6.ieee.org2users.ece.utexas.edu3user.eng.umd.edu4highered.mheducation.com5user.engineering.uiowa.edu+3 more You Sent by you: you said that 200 layers make a column (bit line)? That means it needs 1 sense amplifier ? Copilot Sent by Copilot: In 3D NAND flash memory, the bit cells are stacked vertically in layers, and these layers form what is known as a bit line. Each bit line typically requires a sense amplifier to read the data stored in the bit cells. To clarify: Bit Line: A vertical column of bit cells. In advanced 3D NAND, this can involve over 200 layers of bit cells1. Sense Amplifier: Each bit line is connected to a sense amplifier. The sense amplifier detects the small voltage changes that represent the stored data in the bit cells2. So, yes, a single bit line, which can be composed of many vertically stacked layers of bit cells, typically requires one sense amplifier to read the data from that bit line. If you have more questions or need further details, feel free to ask! 1: Micromachines 2: IEEE Learn more 1tayloredge.com2graphics.stanford.edu3en.wikipedia.org4cse.scu.edu5r6.ieee.org6users.ece.utexas.edu7user.eng.umd.edu8highered.mheducation.com9user.engineering.uiowa.edu+5 more You Sent by you: what is the tickness of 1 layer in nand Copilot Sent by Copilot: The thickness of a single layer in 3D NAND flash memory can vary depending on the specific technology and manufacturer. However, each layer is typically on the order of tens of nanometers thick. For example, in some advanced 3D NAND technologies, the thickness of each layer can be around 40 nanometers1. This incredibly thin layering allows manufacturers to stack hundreds of layers vertically, significantly increasing the storage density without increasing the physical footprint of the memory chip. Isn’t it fascinating how such tiny layers can hold so much data? If you have more questions or need further details, feel free to ask! 1: The Memory Guy Learn more 1semiengineering.com2micron.com3thememoryguy.com4thememoryguy.com5anandtech.com6allaboutcircuits.com7semiengineering.com8itigic.com+4 more You Sent by you: do So much layers in nand "blur" litography and thus "blur" litography and increase the surface Copilot Sent by Copilot: Stacking many layers in 3D NAND flash memory does present challenges, but it doesn’t necessarily “blur” the lithography. Instead, it shifts the complexity from horizontal scaling to vertical scaling. Here are some key points: Vertical Scaling Challenges: As the number of layers increases, maintaining uniformity and precision in each layer becomes more difficult. High aspect ratio etching and deposition processes are required to ensure that each layer is correctly formed1. Lithography Relaxation: One advantage of 3D NAND is that it relaxes some of the stringent requirements on lithography compared to 2D NAND. Since the layers are stacked vertically, the horizontal dimensions don’t need to be as small, which can reduce some lithographic challenges1. Surface Area: While the surface area of each individual layer remains small, the overall surface area of the memory chip increases as more layers are added. This can lead to increased complexity in manufacturing and potential issues with yield and defect rates2. Process Control: Advanced process control techniques are essential to manage the increased complexity. This includes ensuring uniform material properties from the bottom to the top of the stack and minimizing contamination2. In summary, while stacking many layers in 3D NAND does introduce new challenges, it also provides opportunities to overcome some of the limitations of traditional 2D NAND lithography. If you have more questions or need further details, feel free to ask! 1: Entegris 2: SemiEngineering Learn more 1entegris.com2entegris.com3semiengineering.com You Sent by you: does surface roughness increase the surface gradually with layers number making litography not easy? Copilot Sent by Copilot: Yes, surface roughness can indeed increase with the number of layers in 3D NAND, which can complicate the lithography process. Here are some key points: Surface Roughness Accumulation: As more layers are added, any imperfections or roughness in each layer can accumulate, leading to a more uneven surface1. This can make subsequent lithographic steps more challenging. Impact on Lithography: Increased surface roughness can affect the precision of lithographic patterning. Variations in surface topography can lead to issues with focus and alignment, making it harder to achieve the desired feature sizes and shapes2. Mitigation Techniques: To address these challenges, manufacturers use various techniques such as underlayer coatings and planarization processes to smooth out the surface before additional layers are added3. These techniques help maintain the quality and precision of the lithographic process. Overall, while surface roughness does pose challenges, advanced manufacturing techniques are continually being developed to mitigate these issues and ensure high-quality 3D NAND production. If you have more questions or need further details, feel free to ask! 1: Entegris 2: SemiEngineering 3: Entegris Learn more 1lithoguru.com2degruyter.com3semiengineering.com4escholarship.org5doi.org6entegris.com7entegris.com8semiengineering.com+4 more You Sent by you: do this 200 layered chips maintain the same noise immunity and data retention time Copilot Sent by Copilot: Maintaining noise immunity and data retention time in 200-layer 3D NAND chips is challenging but achievable with advanced techniques: Noise Immunity: As the number of layers increases, managing noise becomes more complex. However, manufacturers use advanced error correction codes (ECC) and improved sensing technologies to maintain noise immunity. These techniques help ensure that data can be accurately read even in the presence of electrical noise1. Data Retention: Data retention time can be affected by factors such as temperature and the number of program/erase cycles. Advanced materials and design improvements help maintain data retention times comparable to those of lower-layer NAND chips. For instance, modern 3D NAND chips are designed to retain data for 10 years or more under typical operating conditions2. While there are challenges, ongoing advancements in materials science and chip design help ensure that 200-layer 3D NAND chips can maintain high levels of noise immunity and data retention. If you have more questions or need further details, feel free to ask! 1: Entegris 2: SemiEngineering Learn more 1mouser.com2avalanche-technology.com3avalanche-technology.com 10of10 You've reached the conversation limit for today. Sign in to start a new chat. Уви, изчерпах си лимита за днес. Имам още няколко въпроса, но утре
  12. Боже! т.е. Модераторе! Може ли тук да се получи някаква дискусия? Латерни! Ето, горното за кой ли път се повтаря? Добре! Само дето не изрече изводът - да мре диктаторът, да мре и народът му! Е, аз съм написал и за този вариант - Армагедон.. П.С. От всичко, което повтаря латерната, излиза че Русия е слаба. Т.е. интересът на България е защитен. Модераторе, затваряй темата!
  13. Това молба към господа ли е? Аргументите на пишещите тук, които ми се нахвърлят безмозъчно, са късогледи. Наподобяват логика, но доста плитка. "Ние имаме интерес Русия да е слаба, защото така няма да има възможност да ни се бърка" - изглежда смислено, но: - За да стане слаба, Русия трябва да бъде сломена първо. Да видим може ли това да стане безболзнено? Безболезнено означава да се разпадне Русия, като нито едно от стратегическите ядрени оръжия, на които тя е най-богата в света, не гръмне. Най-добрият начин това да стане е чрез омайване и успокояване на народа. Дава му се да вкуси от западни начин на живот, за който той е жаден. Непрекъснато убеждаване, какви сме приятели (ние хегемоните). "Взаимно" унищожаване на арсенали. Шетане на наши сътрудници из руските фабрики и подмамване с уж съвместни модерни технологии и световен пазар. И в един добър момент"щрак" - всички ядрени глави под наша охрана. Всичко това вече се е случвало около времето на Елцин. Но така и не се стигна до момента "щрак" Тактиката с омайване не сполучи. Русия се усети и приложи на секундата диктаторска форма на управление. Това е съвсем стандартно решение в екстрени ситуации. А, да ви напомня, че "диктатор" е длъжност (съвсем нормална и законна в римската република). Диктаторската институция се използва във времена на екстремна опасност за държавата и се отменя след това. При диктатура демокрацията се орязва и аз се чудя защо Путин не го прави издълбоко и с по-здрава ръка? В момента в Русия има повече демокрация, отколкото трябва. Даже е повече от демократичния свят, гледно отгоре-надолу и отляво-надясно. Но това си заслужава отделна тема При диктатурата на Путин Русия много бързо стъпи на крака, а сега се вижда че е и в изключително устойчива поза. Тука непрекъснато се пускат оценки за вътрешното състояние на Русия на базата на отминали времена (и ,естествено, със хейтърски привкус). Такива оценки не са верни. Русия не е стояла на едно място. Русия от 21 век е нещо друго. След като "со кротце, со благо" не успя, следва "со малце кьотек". Подклаждане на локални етнически конфликти. Грузия и сега Украйна. (моля не превключвайте сега на тема "морално/неморално", защото говоря на тема как да се отслаби Русия. Това е технически въпрос, а в такъв случай "моралът" става едно от оръжията, което се хаква в тялото на врага в най-подходящия момент ) Благодаря, че това оръжие е поверено на вас, но трябва да се научите да го използвате по-умело Та.. Стоейки стабилно, Русия е помислила за случая, когато ще губи, губи и пак губи - това, сетихте се, е ядрения шантаж. Тя вече притежава оръжейна система, която ще сработи когато Русия е тотално превзета. Това е оръжието "на съдния ден". След това, пак се сещате, ще настъпи ядрен Армагедон. И какво? Къде, в случая е интересът на България? Имаме слаба Русия. Направо занулена. Но ние с нашия марко-тотевски късмет ще сме първите натръшкани от радиация
  14. Абе булонка, кого плашиш? Откога искам да не си губя времето, ама пусто нито ме банят, и даже са премахнали възможността човек да си изтрие профила. То Наука тук няма. Само хейтърлък от най-низша проба.
  15. Втория, то е ясно, че милион идиоти трябва непрекъснато да се нахъсват (насъскват). То за това се леят тонове жълта и синя боя. Затова Кубрат прибра мангизите и се надупи на Кличко. Те, идиотите не знаят, че трябва да връщат боята. Ама ония я искат червена и еко-натурална от животински произход
  16. Ха ха, Виждам, че булонките на Хегемона са наджафкали скромния неутрал Втория, понеже си нямат друг русофил под ръка. Ама той не е русофил бре! Едва ли ще ме чуете сред врявата. Сега да не ме почнете мен? Аз съм публика, да се разберем! Вашият режисьор го е смъднало да се бръкне да плати на един двама щатни русофили, че да стане театрото. Така, да си джафкате към месечината няма файда
  17. Излишно ползваш емоции като контрааргументи. В тая тема това е безполезно. Как така безполезно, щом думата"морал" е полезна и се употребява за уязвяване? Караш ме зорлем да адвокатствам на Русия, но съм само служебен адвокат, понеже няма друг. Знам, че Русия търсеше начин да приобщи Украйна и я устройваше пътят на Белорусия. Грях ти е да отричаш, че не го пробва няколко пъти со кротце. Чудя се как Путин е разчитал, че така може да стане, уж е КГБист? Бил съм в Украйна още по брежнево време. Даже тогава намирисваше на бандеризъм. Бъдещият конфликт се очертаваше като неизбежен. На маса, за кудош им пророкувах, че Киев ще стане център на 3тата световна и те се чудеха защо пък съм избрал Киев, а не Москва например? Обяснимо, не можеше да им кажа защо. ПС С добро или със лошо Русия щеше да пробва да направи Украйна такава, каквато я устройва. А именно: неутрална и демилитаризирана или приобщена. КГБ явно е смятало, че бандеризмът е не е толкова силен и че украинският народ сам може да се справи чак докато ножът опря о кокал. Самата операция започна съвсем видимо с разчет на вътрешна подръжка. Каква въпиуща наивност за ролята на народа! Оказа се, че народът е само едно месо, а не инициативен субект, както е според мантрите на Ленин. Явно в КГБ не са сменили учебниците?
  18. Няколко поста по-нагоре показах, че не съм привърженик на Путин и никак не одобрявам действията му по отношение на България. Но тази ваша садистична радост от отнемането на животи, само защото са руски във една тема, която превиши в пъти цялото останало съдържание на този "" научен"" форум, тя, тази радост е безмозъчна и пагубна. Безсмислено е да ви опонирам, защото нищо не ви влиза в шамандурите.
  19. Не ми плащат като на теб, за да се изливам в такъв порой от приказки. Дал бил някаква формална статистика, която била вярна, защото е от служителите на ООН. Тези уж безпристрастни служители, които слагат радиомаяци за насочване на артилерията. Добре - статистиката е вярна, но ако ти беше сред убитите тя ще те зарадва ли? Ако само 5 деца да бъдат разпрани от мина "лепесток" , това за теб е близко до нищо. Самото разхвърляне на хиляди такива мини из милионен град показва желание за геноцид. И какво? заради твоята статистика хората да не се крият и евакуират? Да спрат да се пазят, та кривата да сочи нагоре и да може аз (или Путин) да имаме основание? Ти нямаш сърце и явно си с диагнозата на Чикатило.
  20. Оспорвай изложените факти един по един. "... знаем, че това са.." - това не е дискусия, а крясъци за заглушаване. .. Да нападна, но дали е първа? След като обстрела на новите републики стана нетърпим и с много цивилни жертви. Т.е. имаше сериозен повод. Да не повтарям, че са спазени 2те предпоставки по устава на ООН. Когато САЩ "спасяваха" Кувейт, те не се ограничиха само с територията на Кувейт, а нахлуха в Ирак с 430 хил. армия. Но хегемонът не може да бъде наречен агресор, нали така? Аз пледирам само за равен аршин. Не оправдавам никого.
  21. Ти не щеш ли ялтенски салфетки? Тогава яж 3та световна ! Добре, че тук таме има разумни хора.
  22. Да перефразирам Радой Ралин: Ако погледнем формално - Русия е нормален агресор. Ако погледнем нормално - Русия е формален агресор. Квантова неопределеност Формалната последоваелност е следната: Имаше преврат. Имаше несъгласие от регионите. Един клоун излъга за преговори и народът го избра. Властта стана легитимна - формалност, но важна. Тогава ескалацията на терора се засили. Бъдещият агресор няколко пъти участва в конференции на високо ниво. Няколко пъти го излъгаха. Той започна агресията? Не, и той знае законите. - Първо, част от един народ обяви независима държава. Второ, независимата държава повика на помощ друга държава. И двете неща са според устава на ООН - формално. Значи започна помощ, не агресия - формално. Ако се позовем на прецедентното право - имаме съвсем пресни прецеденти: извикване на помощ от Косово и Кувейт. Итересно е, че САЩ поощриха и двете агресии по шаблон- казаха на Саддам, че няма да се месят в арабско-арабски конфликт. Това бе лъжа. В деня преди руската агресия Байдън 3 пъти даде гръмки изявления, че САЩ няма да се меси като преди обаче безразборните обстрели на Донецк се увеличиха в пъти. Русия беше докарана до "цугцванг".
  23. За какво е тая тема? България ли по ни интересува или Русия? Аман от русохейтъри. Разбрахме, Русия ще губи всякак. Няма нужда като развалена плоча да го въртите това непрекъснато. Ние искаме да разберем какво ще прави България, но този въпрос все се заглушаа от русохейтърство. ПС Казах ти да не споменаваш думата "морал". Нито жертвата е 100% жертва, нито агресорът 100% агресор. Истината е някъде по средата. Вземи покалендарно фактите преди агресията, нали си бивш русофил? Но явно не си, защото си нямаш хабер от предисторията на конфликта.
  24. Тази протославянска експанзия я предугадих на лингвистична база - ареалът на лужицката култура се оказва точно между италийските езици и балтските. Славянският език се е изсипал на изток, не обратното. Генетиката на славяните започва да се намества. Изглежда всичко започва от едно по-високо културно лужицко ядро и чрез културата и езикът започва да се разлива по генетично различни племена. Много ще е интересно да се види хаплогрупата на това ядро? Не очаквам 100% да е R1a .
  25. Хидротермален комин - това се спряга като най-вероятно начало на живота. Това нещо съдържа освен необходимите органични градивни блокчета, също и енергията за задвижване на процесите във вид на серни съединения, които се оксляват. И досега процъфтяват бактерии, които разчитат на този примитивен механизъм, вместо на фотосинтеза. Такива комини има или е имало на много планети. Фотолизта на СО2 способства наистина за създаване на органика, която би била инициатор на живота в първичните локви, но хидротермалните комини бълват такива неща в много по-голяма концентрация.

За нас

"Форум Наука" е онлайн и поддържа научни, исторически и любопитни дискусии с учени, експерти, любители, учители и ученици.

За своята близо двайсет годишна история "Форум Наука" се утвърди като мост между тези, които знаят и тези, които искат да знаят. Всеки ден тук влизат хиляди, които търсят своя отговор.  Форумът е богат да информация и безкрайни дискусии по различни въпроси.

Подкрепи съществуването на форумa - направи дарение:

Дари

 

 

За контакти:

×
×
  • Create New...
/* Revenue-Ads-Footer */ /* За дарение */
×

Подкрепи форума!

Дори малко дарение от 5-10 лева от всеки, който намира форума за полезен, би направило огромна разлика. Това не е просто финансова подкрепа - това е вашият начин да кажете "Да, този форум е важен за мен и искам да продължи да съществува". Заедно можем да осигурим бъдещето на това специално място за споделяне на научни знания и идеи.