Отиди на
Форум "Наука"

Фантастичните микро СД карти от 2 терабайта. Възможни ли са?


Recommended Posts

  • Потребител
Публикува

Аз лично не съм си купил още, но гледам в Тубата как ги тестват и ... явно не са сън  :)

По досегашните технхнологии (и без някакви хитрости) те не са възможни, та  затова поразпитах Коопилота и вижте какво ми обясни той:

 

You
Sent by you:
explain how 1TB fits microSD card size bearing in mind litography phisical limitations
 
Copilot
Sent by Copilot:

Fitting 1TB of data into a microSD card involves several advanced technologies and techniques:

  1. Lithography Advances: Modern microSD cards use advanced lithography techniques to create smaller and more densely packed memory cells. The process has evolved from 28nm to 7nm and even smaller, allowing more data to be stored in the same physical space1.

  2. 3D NAND Technology: Instead of just storing data on a single layer, 3D NAND technology stacks multiple layers of memory cells vertically. This significantly increases storage capacity without increasing the card’s footprint2.

  3. Improved Error Correction: Advanced error correction algorithms ensure data integrity even as memory cells become smaller and more densely packed. This allows manufacturers to push the limits of storage density2.

  4. Efficient Data Management: Modern microSD cards use sophisticated data management techniques to optimize storage and retrieval, ensuring that the high capacity does not compromise performance3.

These innovations collectively enable the impressive feat of fitting 1TB of data into a tiny microSD card, about the size of a fingernail.

Isn’t it fascinating how far technology has come? 📱💾

1: Reddit 2: PCWorld 3: Mashable

 
 
 
 
You
Sent by you:
dimensions of a bit cell ; how much of them are stacked up
 
Copilot
Sent by Copilot:

The dimensions of a bit cell in modern NAND flash memory can vary, but they are typically on the order of tens of nanometers. For example, in advanced 3D NAND technology, a bit cell might be around 20-30 nanometers in size1.

Regarding stacking, 3D NAND technology involves stacking multiple layers of these bit cells vertically. As of now, the latest 3D NAND technologies can stack over 200 layers2. This vertical stacking significantly increases the storage density without increasing the footprint of the memory chip.

Isn’t it amazing how such tiny components can hold so much data? If you have more questions about this technology, feel free to ask!

1: MIT OpenCourseWare 2: Micromachines

 
 
 
 
You
Sent by you:
keeping this in mind, how much of them comprise a 1 NAND
 
Copilot
Sent by Copilot:

In NAND flash memory, the smallest unit is a bit cell, which stores a single bit of data (0 or 1). These bit cells are organized into larger structures:

  1. NAND Strings: A string typically consists of 32 or 64 bit cells connected in series1.

  2. NAND Pages: Pages are the smallest unit of data that can be read or written at one time. A page usually contains thousands of bit cells. For example, a common page size might be 4KB, which equates to 32,768 bit cells1.

  3. NAND Blocks: Blocks are composed of multiple pages. A typical block might contain 64 to 256 pages, depending on the specific NAND technology1.

So, to summarize:

  • A NAND string contains 32 or 64 bit cells.
  • A NAND page contains thousands of bit cells (e.g., 32,768 bit cells for a 4KB page).
  • A NAND block contains multiple pages, which means it can contain millions of bit cells.

These structures allow NAND flash memory to efficiently store and manage large amounts of data.

If you have more questions or need further clarification, feel free to ask!

1: Cactus Technologies

 
 
 
 
You
Sent by you:
Does 1 verticaly stacked chain of bits make one NAND
 
Copilot
Sent by Copilot:

Not exactly. In NAND flash memory, a single vertically stacked chain of bit cells is known as a NAND string. This string is a fundamental component, but it doesn’t constitute the entire NAND structure by itself.

Here’s a breakdown:

So, while a single vertically stacked chain of bit cells (a NAND string) is a crucial part of the NAND architecture, it takes many such strings, organized into pages and blocks, to form a complete NAND flash memory structure.

If you have more questions or need further details, feel free to ask!

1: Cactus Technologies 2: TechRadar

 
 
 
 
You
Sent by you:
1 bit amplifier is for string, page or ?
 
Copilot
Sent by Copilot:

A sense amplifier in NAND flash memory is typically associated with a bit line, which means it is used to read the data from a column of bit cells. Here’s how it fits into the overall structure:

  • NAND String: A series of bit cells connected in a vertical chain. Each bit cell in the string is connected to a bit line.
  • Bit Line: The sense amplifier is connected to the bit line and is responsible for detecting the small voltage changes that represent the stored data in the bit cells.
  • Page: A page consists of multiple bit lines, and thus multiple sense amplifiers are used to read an entire page.
  • Block: A block contains multiple pages, so it involves many sense amplifiers working together to read or write data.

So, a sense amplifier is primarily associated with a bit line, but it plays a crucial role in reading data from pages and blocks as well.

If you have more questions or need further details, feel free to ask!

 
 
 
 
You
Sent by you:
you said that 200 layers make a column (bit line)? That means it needs 1 sense amplifier ?
 
Copilot
Sent by Copilot:

In 3D NAND flash memory, the bit cells are stacked vertically in layers, and these layers form what is known as a bit line. Each bit line typically requires a sense amplifier to read the data stored in the bit cells.

To clarify:

So, yes, a single bit line, which can be composed of many vertically stacked layers of bit cells, typically requires one sense amplifier to read the data from that bit line.

If you have more questions or need further details, feel free to ask!

1: Micromachines 2: IEEE

 
 
 
 
You
Sent by you:
what is the tickness of 1 layer in nand
 
Copilot
Sent by Copilot:

The thickness of a single layer in 3D NAND flash memory can vary depending on the specific technology and manufacturer. However, each layer is typically on the order of tens of nanometers thick. For example, in some advanced 3D NAND technologies, the thickness of each layer can be around 40 nanometers1.

This incredibly thin layering allows manufacturers to stack hundreds of layers vertically, significantly increasing the storage density without increasing the physical footprint of the memory chip.

Isn’t it fascinating how such tiny layers can hold so much data? If you have more questions or need further details, feel free to ask!

1: The Memory Guy

 
 
 
 
You
Sent by you:
do So much layers in nand "blur" litography and thus "blur" litography and increase the surface
 
Copilot
Sent by Copilot:

Stacking many layers in 3D NAND flash memory does present challenges, but it doesn’t necessarily “blur” the lithography. Instead, it shifts the complexity from horizontal scaling to vertical scaling. Here are some key points:

  1. Vertical Scaling Challenges: As the number of layers increases, maintaining uniformity and precision in each layer becomes more difficult. High aspect ratio etching and deposition processes are required to ensure that each layer is correctly formed1.

  2. Lithography Relaxation: One advantage of 3D NAND is that it relaxes some of the stringent requirements on lithography compared to 2D NAND. Since the layers are stacked vertically, the horizontal dimensions don’t need to be as small, which can reduce some lithographic challenges1.

  3. Surface Area: While the surface area of each individual layer remains small, the overall surface area of the memory chip increases as more layers are added. This can lead to increased complexity in manufacturing and potential issues with yield and defect rates2.

  4. Process Control: Advanced process control techniques are essential to manage the increased complexity. This includes ensuring uniform material properties from the bottom to the top of the stack and minimizing contamination2.

In summary, while stacking many layers in 3D NAND does introduce new challenges, it also provides opportunities to overcome some of the limitations of traditional 2D NAND lithography.

If you have more questions or need further details, feel free to ask!

1: Entegris 2: SemiEngineering

 
 
 
 
You
Sent by you:
does surface roughness increase the surface gradually with layers number making litography not easy?
 
Copilot
Sent by Copilot:

Yes, surface roughness can indeed increase with the number of layers in 3D NAND, which can complicate the lithography process. Here are some key points:

  1. Surface Roughness Accumulation: As more layers are added, any imperfections or roughness in each layer can accumulate, leading to a more uneven surface1. This can make subsequent lithographic steps more challenging.

  2. Impact on Lithography: Increased surface roughness can affect the precision of lithographic patterning. Variations in surface topography can lead to issues with focus and alignment, making it harder to achieve the desired feature sizes and shapes2.

  3. Mitigation Techniques: To address these challenges, manufacturers use various techniques such as underlayer coatings and planarization processes to smooth out the surface before additional layers are added3. These techniques help maintain the quality and precision of the lithographic process.

Overall, while surface roughness does pose challenges, advanced manufacturing techniques are continually being developed to mitigate these issues and ensure high-quality 3D NAND production.

If you have more questions or need further details, feel free to ask!

1: Entegris 2: SemiEngineering 3: Entegris

 
 
 
 
You
Sent by you:
do this 200 layered chips maintain the same noise immunity and data retention time
 
Copilot
Sent by Copilot:

Maintaining noise immunity and data retention time in 200-layer 3D NAND chips is challenging but achievable with advanced techniques:

  1. Noise Immunity: As the number of layers increases, managing noise becomes more complex. However, manufacturers use advanced error correction codes (ECC) and improved sensing technologies to maintain noise immunity. These techniques help ensure that data can be accurately read even in the presence of electrical noise1.

  2. Data Retention: Data retention time can be affected by factors such as temperature and the number of program/erase cycles. Advanced materials and design improvements help maintain data retention times comparable to those of lower-layer NAND chips. For instance, modern 3D NAND chips are designed to retain data for 10 years or more under typical operating conditions2.

While there are challenges, ongoing advancements in materials science and chip design help ensure that 200-layer 3D NAND chips can maintain high levels of noise immunity and data retention.

If you have more questions or need further details, feel free to ask!

1: Entegris 2: SemiEngineering

 
10of10
 
 You've reached the conversation limit for today. 

Sign in to start a new chat. 

Уви, изчерпах си лимита за днес. Имам още няколко въпроса, но утре  :)

  • Потребител
Публикува

В резюме:

Усвояването на 3тото измерение (дебелина) позволява да се отложи отмяната на закона на Мур, но май ще е за кратко  :)

При 200 слоя, една 1-бит клетка ще е с размери около   45х45х40 нанометра, което е в обхвата на съвременната литография, даже с малък аванс. Освен това, не се слиза под квантовата граница за канала на 1 МОС транзистор - 26 нанометра.  (за 1ТВ микро СД флаш )

3D_NANA_basic_structure.png.283094f496d3b73ec6c824bcb913668d.png

Както се вижда от горното грубо представяне на един вертикален НАНД-стринг, няма отделно технологично оформяне на всяка една 1-бит клетка. Явно първо се нанасят слоевете (отдолу на силициевата пластина може да има вече някаква структура), а после се дупчат вертикални кладенци през цялата баница. Слоевете са пределно прости - слой изолатор, слой полупроводящ силиций и т.н. Този силиций ще служи после за гейт на целия "етаж" от 1-битови клетки на огромен по площ блок.  До тук няма никаква литография със съответните въпроси за съвпадане, гладкост и др. Следва един важен процес на дупчене на кладенци. Дименсиите на един кладенец са 200 слоя х 40 наном. = 8 микрона. Диаметъра би трябвало да е 1/4 от размера на клетката или 12-20 наном. Това е много тесен и дълбок кладенец със съотношение  дълбочина/диаметър до към 500. Не съм питал за технологията, но знам че още преди 40 г. имаше успехи с такива кладенци по различни технологии - например асистирано със светлина ионно разядане, където светлината огрява само дъното на кладенеца и така диаметъра не се разширява произволно. Но тук работим с диаметри искащи много малки дължини на вълната. Другата технология изглежда по-вероятна дупчене чрез частици от ускорител.

След като кладенците са пробити, следва оформянето на МОС-транзисторните структури, което става чрез няколко процеса, общи за всички транзистори по стринга. Плаващ гейт не се оформя индивидуално, а се използва известния зарядов капан на граничния слой нитрид-силиций. Значи - правят се два тънки изолиращи окиси, нитрид и транзисторен канал - всичко това върху вертикалните стени на кладенеца.

След като го виждаме, че работи, можем да кажем Гениално решение! 

Благодарение на това имаме памет с несметен размер и веднага възниква следващият закон на Ексхемус - "когато размерът на паметта нарастне, изпреварвайки времето си, то тя задължително се запълва със глупости!"   

Какво следва? Ами някакво адаптиране на тази технология за чипове за невронни мрежи. От всичко друго, те са най-подходящи, понеже са изградени от регулярни слоеве. Обаче слоевете им са малко по-сложнички. Предизвикателство !  :)  

Напиши мнение

Може да публикувате сега и да се регистрирате по-късно. Ако вече имате акаунт, влезте от ТУК , за да публикувате.

Guest
Напиши ново мнение...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Зареждане...

За нас

"Форум Наука" е онлайн и поддържа научни, исторически и любопитни дискусии с учени, експерти, любители, учители и ученици.

За своята близо двайсет годишна история "Форум Наука" се утвърди като мост между тези, които знаят и тези, които искат да знаят. Всеки ден тук влизат хиляди, които търсят своя отговор.  Форумът е богат да информация и безкрайни дискусии по различни въпроси.

Подкрепи съществуването на форумa - направи дарение:

Дари

 

 

За контакти:

×
×
  • Create New...
×

Подкрепи форума!

Твоето дарение ще ни помогне да запазим и поддържаме това място за обмяна на знания и идеи. Благодарим ти!