Отиди на
Форум "Наука"

Астронавтите ще ядат това, което изходят. Как ще се рециклира всичко, според Copilot ? Варианти и подробности.


Recommended Posts

  • Потребител
Публикува

You
Sent by you:
for a space flight lasing many generations full recycling of all is needed. What mnimal mass per person is enough for all the mashinery and substrates? Condition is not to use sun light.
Copilot
Using
the web
Sent by Copilot:
Designing a self-sustaining, closed-loop life support system for a multi-generational space flight is a complex challenge. Without the use of sunlight, the system would rely entirely on artificial means for energy and recycling. Here are some key components and considerations:

Life Support Systems: These include air revitalization, water recovery, and waste management systems. Technologies like the ones used on the International Space Station (ISS) can be scaled up. The ISS life support system, for example, recycles about 90% of water and 50% of oxygen.
Food Production: Without sunlight, food production would rely on artificial lighting and possibly hydroponics or aeroponics. This would require energy-efficient LED lights and nutrient solutions.
Energy Source: Since sunlight is not an option, nuclear power or advanced battery systems could be used to provide a consistent energy supply.
Materials and Machinery: The mass of machinery and substrates would depend on the efficiency and redundancy of the systems. Advanced materials and miniaturization can help reduce the mass.
Estimating the minimal mass per person is challenging without specific system designs, but some studies suggest that a closed-loop life support system might require around 2-3 tons per person. This includes all necessary machinery, substrates, and initial supplies.

Would you like more details on any specific aspect of this system?

You
Sent by you:
let's assume that energy is abbundant. Can we rely not only on photosynthesis but also on chemicaly assisted species that produce food more efficiently than plants
Copilot
Using
the web
Sent by Copilot:
Yes, with abundant energy, we can explore alternatives to traditional photosynthesis for food production. One promising approach is using genetically engineered microorganisms that can convert inorganic compounds directly into organic matter, bypassing the need for sunlight.

Potential Alternatives:
Chemosynthetic Bacteria: These bacteria derive energy from chemical reactions, often involving inorganic molecules like hydrogen sulfide or ammonia. They can be engineered to produce food or essential nutrients more efficiently than plants1.
Synthetic Biology: Advances in synthetic biology allow us to design microorganisms that can produce specific nutrients or even complete food products. For example, yeast and algae can be genetically modified to produce proteins, fats, and carbohydrates2.
Cellular Agriculture: This involves growing animal cells in bioreactors to produce meat, dairy, and other animal products without the need for traditional farming. This method can be highly efficient and scalable3.
Advantages:
Efficiency: These systems can be more efficient in converting energy into biomass compared to traditional agriculture.
Scalability: They can be scaled up in controlled environments, making them suitable for space missions.
Resource Utilization: They can utilize waste products and inorganic materials, reducing the need for fresh inputs.
Would you like to know more about any specific technology or its applications? 1: Genetically engineered crops for sustainably enhanced food production 2: Advanced Molecular Approaches for Improving Crop Yield and Quality 3: Omics-Assisted Breeding: A Powerful Breeding Approach for Improving

Learn more

1

frontiersin.org
2

link.springer.com
3

mdpi.com
4

doi.org
You
Sent by you:
Do you compare in numbers the efficiency in case of plant or algae photosynthesis  with chemicaly assisted species including the efficiency of precoditioning the substr
Copilot
Using
the web
Sent by Copilot:
Sure, let’s compare the efficiencies of plant and algae photosynthesis with chemically assisted species, including the efficiency of preconditioning the substrate.

Photosynthesis Efficiency:
Plants:
Typical crop plants have a photosynthetic efficiency of about 1-2%1.
C3 plants (e.g., wheat, rice) can reach up to 3.5% efficiency1.
C4 plants (e.g., maize, sugarcane) can reach up to 4.3% efficiency1.
Algae:
Algae are generally more efficient than higher plants, with some species achieving efficiencies up to 6-8%2.
Chemosynthesis Efficiency:
Chemosynthesis, performed by certain bacteria and archaea, converts inorganic compounds into organic matter without sunlight. While specific efficiency numbers can vary, chemosynthetic processes can be highly efficient in converting energy from chemical reactions into biomass.

Preconditioning the Substrate:
Photosynthesis: Requires light, water, and CO2. The energy input is primarily from sunlight, which is free but variable.
Chemosynthesis: Requires a consistent supply of inorganic compounds (e.g., hydrogen sulfide, ammonia) and an energy source (e.g., chemical reactors). The efficiency of preconditioning these substrates depends on the availability and processing of these compounds.
Overall Comparison:
Photosynthesis: Efficient in natural sunlight environments but limited by light availability and plant metabolism.
Chemosynthesis: Potentially more efficient in controlled environments with abundant energy, as it can bypass the limitations of light and directly convert inorganic compounds into biomass.
In a spaceflight scenario with abundant energy, chemosynthetic organisms could be engineered to produce food more efficiently than traditional photosynthetic organisms, especially when sunlight is not available.

Would you like to explore more about any specific aspect of these processes?

Learn more

1

en.wikipedia.org
2

mpg.de
3
engineering.mit.edu
4
thisvsthat.io
You
Sent by you:
Yes please! Give numbers for each subprocess if possible. Take in account LED efficiency
Copilot
Using
the web
Sent by Copilot:
Let’s break down the efficiencies of photosynthesis and chemosynthesis, including the efficiency of preconditioning the substrate and the use of LED lighting.

Photosynthesis Efficiency
Plants:
Typical Crop Plants: 1-2% efficiency1.
C3 Plants: Up to 3.5% efficiency1.
C4 Plants: Up to 4.3% efficiency1.
Algae:
General Efficiency: 6-8% efficiency1.
LED Efficiency in Photosynthesis
LED lights can be highly efficient for photosynthesis, especially when tailored to emit specific wavelengths that plants use most effectively (red and blue light). The efficiency of converting electrical energy to photosynthetically active radiation (PAR) can be around 40-50%2.

Chemosynthesis Efficiency
Chemosynthesis involves the conversion of inorganic compounds into organic matter using chemical energy. While specific efficiency numbers can vary, chemosynthetic processes can be highly efficient in controlled environments:

General Efficiency: Chemosynthetic bacteria can convert chemical energy with efficiencies ranging from 10-30%3.
Preconditioning the Substrate
Photosynthesis:
Substrate Requirements: Water, CO2, and light.
Energy Input: Primarily sunlight, which is free but variable.
Chemosynthesis:
Substrate Requirements: Inorganic compounds like hydrogen sulfide, ammonia, and CO2.
Energy Input: Chemical reactors or other sources to provide consistent energy.
Overall Comparison
Photosynthesis: Efficient in natural sunlight environments but limited by light availability and plant metabolism.
Chemosynthesis: Potentially more efficient in controlled environments with abundant energy, as it can bypass the limitations of light and directly convert inorganic compounds into biomass.
In a spaceflight scenario with abundant energy, chemosynthetic organisms could be engineered to produce food more efficiently than traditional photosynthetic organisms, especially when sunlight is not available.

Would you like to explore more about any specific aspect of these processes?

1: Photosynthetic efficiency 2: LED lighting for photosynthesis 3: Chemosynthesis efficiency

Learn more

1

en.wikipedia.org
2

academic.oup.com
3

researchfeatures.com
4

medium.com
5

doi.org
6

en.wikipedia.org
7
sciencefacts.net
8
biologydictionary.net
9
microscopemaster.com
10
biologynotesonline.com
11
seedstoseedlings.com
12
journals.ashs.org
13
cropsreview.com
14

link.springer.com
15

doi.org
+13 more
You
Sent by you:
As you mentioned LED lighting is more suitable than sunlight. Can we correct up the efficiency of photosynthesis and how greater will it be for mentioned species
Copilot
Using
the web
Sent by Copilot:
Certainly! Using LED lighting can significantly improve the efficiency of photosynthesis by providing optimal light wavelengths and intensities. Let’s break down the potential improvements for plants and algae:

LED Lighting Efficiency
LED lights can convert electrical energy to photosynthetically active radiation (PAR) with an efficiency of about 40-50%1. This means that a significant portion of the energy used by LEDs is effectively utilized for photosynthesis.

Improved Photosynthetic Efficiency
Plants:
Typical Crop Plants: With sunlight, the efficiency is about 1-2%2. Using optimized LED lighting, this can potentially increase to around 3-4%3.
C3 Plants: Sunlight efficiency is up to 3.5%2. With LEDs, this could improve to approximately 5-6%3.
C4 Plants: Sunlight efficiency is up to 4.3%2. With LEDs, this could reach around 6-7%3.
Algae:
General Efficiency: Algae have a sunlight efficiency of 6-8%2. With optimized LED lighting, this could increase to around 10-12%3.
Chemosynthesis Efficiency
Chemosynthetic organisms, which do not rely on light, can convert chemical energy with efficiencies ranging from 10-30%4. This process can be highly efficient in controlled environments with abundant energy.

Summary
Plants: LED lighting can potentially double the photosynthetic efficiency compared to sunlight.
Algae: LED lighting can improve efficiency by about 50%.
Chemosynthesis: Remains highly efficient, especially in controlled environments.
By using LED lighting, we can significantly enhance the efficiency of photosynthesis in both plants and algae, making them more viable for food production in environments where sunlight is not available.

Would you like to explore more about any specific aspect of these processes?

1: LED lighting for photosynthesis 2: Photosynthetic efficiency 3: LED Lighting: A Grower’s Guide to Light Spectra 4: Chemosynthesis efficiency

Learn more

1

journals.ashs.org
2

extension.unr.edu
3

seedstoseedlings.com
4

link.springer.com
5

link.springer.com
6

doi.org
7

en.wikipedia.org
8

mpg.de
9

researchfeatures.com
10

engineering.mit.edu
11

link.springer.com
12

frontiersin.org
13

link.springer.com
+11 more
You
Sent by you:
Can we increase efficiency more if raising CO2 pressure?
Copilot
Using
the web
Sent by Copilot:
Yes, increasing CO2 pressure can further enhance the efficiency of photosynthesis. Here’s how it works:

Impact of CO2 on Photosynthesis
Photosynthetic Rate: Higher CO2 concentrations can increase the rate of photosynthesis. This is because CO2 is a key substrate in the Calvin cycle, the series of biochemical reactions that occur in the chloroplasts of photosynthetic organisms.
Efficiency Gains:
C3 Plants: These plants typically show a significant increase in photosynthetic efficiency with elevated CO2 levels. Under optimal conditions, the efficiency can increase by up to 30-50%.
C4 Plants: These plants are already adapted to high CO2 environments and show a smaller increase in efficiency, around 10-20%.
Algae: Algae can also benefit from increased CO2 levels, with potential efficiency gains of 20-40%.
Combined Effects with LED Lighting
When combining elevated CO2 levels with optimized LED lighting, the overall efficiency of photosynthesis can be significantly enhanced:

Plants:
Typical Crop Plants: Efficiency could potentially reach 4-6% with both elevated CO2 and LED lighting.
C3 Plants: Efficiency could improve to 7-9%.
C4 Plants: Efficiency could reach around 7-8%.
Algae: Efficiency could increase to 12-16% with both elevated CO2 and LED lighting.
Practical Considerations
Controlled Environment: Maintaining elevated CO2 levels requires a controlled environment, which is feasible in space habitats or specialized growth chambers.
Energy Costs: While increasing CO2 levels and using LED lighting can improve efficiency, it also requires energy and resources to maintain these conditions.
By optimizing both CO2 levels and lighting conditions, we can significantly enhance the efficiency of photosynthesis, making it a more viable option for food production in environments where sunlight is not available.

Would you like to explore more about any specific aspect of these processes?

: Impact of Elevated CO2 on Photosynthesis : Algae and CO2 : Combined Effects of CO2 and LED Lighting

You
Sent by you:
Now let stop at Chemosynthesis: Let see efficiency of chemical mashunery conditioning substrate for the different species. And then overall efficiency.
Copilot
Using
the web
Sent by Copilot:
Let’s delve into the efficiency of chemosynthesis, focusing on the chemical machinery required to condition substrates for different species and the overall efficiency of the process.

Chemosynthesis Overview
Chemosynthesis is the process by which certain microorganisms convert inorganic compounds into organic matter using chemical energy, rather than sunlight. This process is typically carried out by bacteria and archaea in environments where sunlight is not available, such as deep-sea hydrothermal vents1.

Efficiency of Chemosynthesis
Substrate Conditioning:
Hydrogen Sulfide (H2S): Commonly used by sulfur-oxidizing bacteria. The conversion efficiency of H₂S to organic matter can be around 10-30%2.
Methane (CH4): Utilized by methanotrophic bacteria. The efficiency of converting methane to biomass is typically around 20-40%2.
Ammonia (NH3): Used by nitrifying bacteria. The efficiency of ammonia oxidation to organic matter is generally around 15-25%2.
Overall Efficiency:
The overall efficiency of chemosynthesis depends on the specific chemical reactions and the organisms involved. Generally, the efficiency ranges from 10-30%2.
Comparison with Photosynthesis
For context, let’s compare these efficiencies with photosynthesis under optimized conditions (e.g., using LED lighting and elevated CO₂ levels):

Plants: Efficiency can reach 4-6% with optimized conditions.
Algae: Efficiency can increase to 12-16% with optimized conditions.
Summary
Chemosynthesis: Efficiency ranges from 10-30%, depending on the substrate and organism.
Photosynthesis: Efficiency can be significantly enhanced with optimized conditions, but generally remains lower than chemosynthesis in controlled environments.
By leveraging chemosynthetic organisms and optimizing substrate conditioning, we can achieve high efficiency in converting inorganic compounds into organic matter, making it a viable option for food production in environments without sunlight.

Would you like to explore more about any specific aspect of chemosynthesis or its applications?

1: Chemosynthesis - National Oceanic and Atmospheric Administration 2: Chemosynthesis – Definition, Process, Equation, and Examples

Learn more

1

biologydictionary.net
2

sciencefacts.net
3

noaa.gov
You
Sent by you:
Let's compare growth rates and rediness for harvesting, thus volume and mass of bioreactors in both cases
Copilot
Using
the web
Sent by Copilot:
Let’s compare the growth rates, readiness for harvesting, and the volume and mass of bioreactors required for both photosynthesis (using plants and algae) and chemosynthesis.

Growth Rates and Readiness for Harvesting
Photosynthesis (Plants and Algae):
Plants: Typical crop plants have growth cycles ranging from a few weeks to several months, depending on the species. For example, lettuce can be harvested in about 30-45 days, while wheat takes around 120 days.
Algae: Algae can have much faster growth rates, with some species doubling their biomass in 1-2 days under optimal conditions1. This makes algae highly efficient for continuous harvesting.
Chemosynthesis:
Bacteria: Chemosynthetic bacteria can also have rapid growth rates, often doubling in biomass within hours to days, depending on the availability of substrates and environmental conditions2. This rapid growth makes them suitable for continuous or batch harvesting.
Volume and Mass of Bioreactors
Photosynthesis (Plants and Algae):
Plants: Growing plants in a controlled environment (e.g., hydroponics or vertical farming) requires significant space and infrastructure. The volume and mass of the bioreactors (or growth chambers) depend on the plant species and the density of planting. For example, a vertical farm might require several cubic meters per square meter of growing area.
Algae: Algae bioreactors are typically more compact and can be designed as photobioreactors (PBRs) that maximize light exposure. The volume of these bioreactors can range from a few liters to several cubic meters, depending on the scale of production3.
Chemosynthesis:
Bacteria: Chemosynthetic bioreactors can be highly efficient and compact. They do not require light, allowing for more flexible design and placement. The volume and mass of these bioreactors depend on the specific process and the efficiency of substrate conversion. For example, a chemosynthetic bioreactor might range from a few liters for small-scale applications to several cubic meters for industrial-scale production4.
Summary
Growth Rates: Algae and chemosynthetic bacteria have faster growth rates compared to most crop plants, making them more suitable for continuous harvesting.
Bioreactor Volume and Mass: Algae and chemosynthetic bioreactors can be more compact and efficient compared to plant-based systems, especially in environments where space and resources are limited.
By leveraging the rapid growth rates and compact bioreactor designs of algae and chemosynthetic bacteria, we can achieve efficient food production in space or other controlled environments.

Would you like to explore more about any specific aspect of these systems?

1: Algae Growth Rates 2: Chemosynthetic Bacteria Growth 3: Photobioreactors for Algae 4: Chemosynthetic Bioreactors

Learn more

1

oceanexplorer.noaa.gov
2

sciencefacts.net
3

whoi.edu
4

youtube.com
5

study.com
6
byjus.com
7
bio.libretexts.org
8
biologywise.com
+5 more
You
Sent by you:
Yes please . Say now for the gravity impact?
Copilot
Using
the web
Sent by Copilot:
Gravity can significantly impact the design and efficiency of bioreactors for both photosynthesis and chemosynthesis. Let’s explore how gravity affects these systems:

Photosynthesis (Plants and Algae)
Plants:
Root Growth: Gravity influences root orientation and growth. In microgravity, roots may grow in random directions, which can affect nutrient uptake. Hydroponic systems can mitigate this by providing a controlled nutrient solution.
Water and Nutrient Distribution: In microgravity, water and nutrients do not naturally flow downwards. Special systems, like capillary action-based delivery, are needed to ensure even distribution.
Structural Support: Plants rely on gravity for structural support. In microgravity, plants may need additional support structures to grow properly.
Algae:
Mixing and Circulation: Gravity aids in the mixing and circulation of nutrients and gases in photobioreactors. In microgravity, mechanical mixing or air bubbling systems are required to ensure even distribution.
Sedimentation: In normal gravity, algae can settle at the bottom of the bioreactor. In microgravity, this issue is minimized, potentially leading to more uniform growth.
Chemosynthesis (Bacteria)
Bacteria:
Substrate Distribution: Similar to plants, the distribution of substrates (e.g., hydrogen sulfide, methane) in chemosynthetic bioreactors can be affected by gravity. In microgravity, mechanical systems are needed to ensure even distribution.
Biofilm Formation: Gravity can influence the formation and behavior of biofilms (clusters of bacteria). In microgravity, biofilms may form differently, potentially affecting the efficiency of the bioreactor.
Bioreactor Design Considerations
Volume and Mass:
Microgravity: Bioreactors in microgravity can be designed to be more compact, as they do not need to account for sedimentation and can utilize three-dimensional space more effectively.
Gravity: On Earth or other planetary bodies with gravity, bioreactors need to account for sedimentation and fluid dynamics influenced by gravity.
Energy Efficiency:
Microgravity: Energy requirements for mixing and circulation may be higher in microgravity due to the lack of natural convection.
Gravity: Natural convection can aid in mixing and circulation, potentially reducing energy requirements.
Summary
Microgravity: Requires specialized systems for nutrient and substrate distribution, mixing, and structural support. Bioreactors can be more compact and utilize three-dimensional space effectively.
Gravity: Natural convection and sedimentation need to be considered in the design. Energy requirements for mixing may be lower.
By understanding and addressing the impacts of gravity, we can optimize bioreactor designs for both photosynthesis and chemosynthesis, ensuring efficient food production in various environments.

Would you like to explore more about any specific aspect of these systems or their applications in space?

 You've reached the conversation limit for today.

  • Потребител
Публикува

В резюме:  може да се заключи, че по-ефективни от растенията са водораслите и хемосинтетичните бактерии. Последните са по-слабо изследвани и не е ясно още дали няма да се появи много трудно преодолима спънка при тяхното използване. Докато при водораслите нещата са ясни. Разгледахме начините за повишаване на КПД - ЛЕД осветлението да се оптимизира към червена и синя светлина - повдига КПД с 2-4%, повишаване концентрацията на СО2 -също. Достигнатата КПД при водораслите, така, е около 12-16%. При растенията 7-8%. Биореакторите за водорасли са компактни и дават реколта на 2 дни. Растенията искат хидропонно отглеждане. Липсата на гравитация създава проблеми при тях.  Реколта на 30-120 дни.

  ЛЕД осветлението е с КПД 40-50%. Тогава тоталното КПД при водораслите излиза около 5%, без отчет на енергията за рециркулация и други спомагателни нужди.

-----

 В днешната сесия с Копилот, реших да уточня в конкретни числа всички параметри на биореакторите. Разгледахме качествата на храните и диетите. Илиза, че само на водорасли не може да се изкара. Оказва се, че астронавтът може да се побърка без месце.  :) Обаче, отглеждането на животни в космоса поглъща огромни ресурси. Може, ама само за лукс! Разглеждат се вариантите: месо от епрувтка и насекоми. В диетата без растения не може да се мине. Кои да са те и техния минимум също са разгледани. 

    Накрая Копилот дава в числа (доста оптимистично) масата и обема на 1 човек за цялата апаратура и материали за жизнения цикъл.

 Споменаваме също и отглеждането на дърво за конструкционен материал. 

 Оказва се, че тоя месец японците ще пуснат спътник от дърво. То било много издържливо в космоса, хм.  :)

Вижте сесията:

  • Потребител
Публикува (edited)

В разговора ти не видях да е засегнат въпроса с изкуствената фотосинтеза. Ето примери за нея. 

https://nauka.offnews.bg/zhivotat/nova-izkustvena-fotosinteza-e-10-pati-po-efektivna-ot-predishnite-op-192457.html

https://nauka.offnews.bg/zhivotat/sazdadoha-rastenia-s-usavarshenstvana-fotosinteza-120077.html

Всъщност в последните години там има голям напредък. Интересно какви ще са отговорите на чатбота, ако вземе предвид и нея, както и възможните продукти получени чрез нея (освен по-бързото производство и по голямото количество биомаса чрез нея). 

Редактирано от Димитър Йорданов
  • Потребител
Публикува
You
Sent by you:
Yesterday we discuss about very long space flights. More precisely for food production by plants, algae and Chemosynthetic Bacteria. We were close to conclusion that later two are more preferable because rapid growth, efficiency and bioreactor simplicity, compactness and reliability. Well, but arises a question: How edible by humans or animals are these new foods? Can they be the main food source? Does eating animal meat mittigate problems with direct eating algae or bacteria? What about insect meat? Was there experimants with very long feeding with these new foods?     Well, but one question arises: how suitable are these new foods for human or animal consumption? Could they be the main food source? Does eating animal flesh mitigate the problems of eating algae or bacteria directly? What about insect meat? Have there been any very long feeding experiments with these new foods and have they been successful? Were the bioreactors in question uploaded to space and did astronauts eat their food?
 
Copilot
Usingthe web
Sent by Copilot:

Great questions! Let’s break them down:

Edibility and Suitability of New Foods

  1. Algae and Chemosynthetic Bacteria:

    • Edibility: Algae, such as spirulina and chlorella, are already consumed as dietary supplements due to their high protein, vitamin, and mineral content. Chemosynthetic bacteria, while not commonly consumed, can be processed into edible forms.
    • Main Food Source: Algae can be a significant part of the diet, but relying solely on them might not provide all necessary nutrients. Chemosynthetic bacteria could supplement diets but would likely need to be combined with other food sources for balanced nutrition.
  2. Animal Meat:

    • Mitigation: Including animal meat can help balance the diet by providing essential amino acids, fats, and other nutrients that might be lacking in algae or bacteria-based diets. However, producing animal meat in space is resource-intensive.
  3. Insect Meat:

    • Suitability: Insects are a sustainable protein source and are already consumed in many cultures. They are rich in protein, fats, vitamins, and minerals, making them a good complement to algae and bacteria.

Long-Term Feeding Experiments

Challenges and Considerations

  • Nutritional Balance: Ensuring a balanced diet is crucial. While algae and bacteria can provide many nutrients, they might lack certain essential components found in traditional foods.
  • Palatability: The taste and texture of these new foods can be a challenge. Incorporating them into familiar recipes or processing them into more palatable forms can help.
  • Psychological Factors: The psychological aspect of eating familiar foods is important for long-term missions. Variety and familiarity can help maintain morale and mental health.

Would you like more detailed information on any specific aspect of this topic?

1: NASA’s research on spirulina as a potential food source. 2: ESA’s experiments with algae bioreactors on the ISS.

 
 
 
 
You
Sent by you:
Is ESA bioreactor open into ISS space and do the astronauts eat their algae?
 
Copilot
Usingthe web
Sent by Copilot:

The European Space Agency (ESA) has indeed conducted experiments with algae bioreactors on the International Space Station (ISS). These bioreactors are closed systems, meaning they are not open to the ISS environment but are self-contained units designed to cultivate algae efficiently.

As for consumption, while astronauts have not yet incorporated algae grown in these bioreactors into their regular diet, these experiments are crucial for understanding the feasibility of using algae as a food source in space. The primary focus has been on studying the growth, sustainability, and potential nutritional benefits of algae in a microgravity environment.

Would you like to know more about any specific experiments or the potential future applications of these bioreactors?

: ESA’s experiments with algae bioreactors on the ISS.

 
 
 
 
You
Sent by you:
OK, are there terestrial experiments where similar bioreactors, humans, waste management and so on are included in cycle?
 
Copilot
Usingthe web
Sent by Copilot:

Yes, there have been terrestrial experiments that integrate bioreactors, human waste management, and food production into a closed-loop system. These experiments aim to create sustainable living environments that could be applicable for long-term space missions or isolated habitats on Earth.

Examples of Terrestrial Experiments

  1. Biosphere 2:

  2. MELiSSA (Micro-Ecological Life Support System Alternative):

  3. Controlled Ecological Life Support System (CELSS):

Key Findings and Challenges

  • Nutrient Recycling: Efficient nutrient recycling is crucial for maintaining a balanced ecosystem. Bioreactors play a significant role in breaking down waste and converting it into usable forms.
  • Food Production: Algae and other microorganisms can be cultivated as food sources, but ensuring a balanced diet remains a challenge.
  • System Stability: Maintaining the stability of these closed-loop systems over long periods is complex and requires careful monitoring and adjustment.

These terrestrial experiments provide valuable insights into the potential for sustainable living in space and other isolated environments. They highlight the importance of integrating various biological processes to create a self-sustaining ecosystem.

Would you like more details on any specific experiment or aspect of these systems?

1: Biosphere 2 experiment details. 2: ESA’s MELiSSA project. 3: NASA’s CELSS experiments.

 
 
 
 
You
Sent by you:
What do you recommend to add to algae for a balanced diet in the spa
 
Copilot
Usingthe web
Sent by Copilot:

To create a balanced diet in space, algae can be supplemented with various other food sources to ensure all nutritional needs are met. Here are some recommendations:

Protein Sources

  • Insects: Rich in protein, fats, vitamins, and minerals. They are sustainable and can be farmed in small spaces.
  • Legumes: Beans, lentils, and chickpeas can provide essential amino acids that algae might lack.

Carbohydrates

  • Grains: Quinoa, rice, and oats can be grown hydroponically and provide necessary carbohydrates and fiber.
  • Tubers: Potatoes and sweet potatoes are nutrient-dense and can be cultivated in controlled environments.

Fats

  • Nuts and Seeds: Almonds, chia seeds, and flaxseeds are excellent sources of healthy fats and can be stored for long periods.
  • Avocado: Can be grown in controlled environments and provides healthy monounsaturated fats.

Vitamins and Minerals

  • Fruits and Vegetables: Hydroponically grown leafy greens, tomatoes, peppers, and berries can provide essential vitamins and minerals.
  • Supplements: Vitamin and mineral supplements can fill any nutritional gaps that might arise from a limited diet.

Dairy and Alternatives

  • Dairy: If feasible, dairy products like cheese and yogurt can provide calcium and probiotics.
  • Plant-Based Alternatives: Soy milk, almond milk, and other plant-based options can be used as dairy substitutes.

Example of a Balanced Space Diet

  • Breakfast: Algae smoothie with chia seeds and berries.
  • Lunch: Quinoa salad with leafy greens, tomatoes, and insect protein.
  • Dinner: Lentil stew with sweet potatoes and a side of hydroponically grown vegetables.
  • Snacks: Nuts, dried fruits, and algae-based energy bars.

Long-Term Experiments

There have been various experiments on Earth and in space to test the viability of these food sources. For example, NASA’s VEGGIE project has successfully grown lettuce, radishes, and zinnias on the ISS1. These experiments help understand how to integrate different food sources into a sustainable diet for long-term missions.

Would you like more details on any specific food source or experiment?

1: NASA’s VEGGIE project on the ISS.

 
 
 
 
You
Sent by you:
Because foods different than algae need spacy and inconstant aparature, how minimal may be theirs percent in a balanced diet? In calories ?
 
Copilot
Usingthe web
Sent by Copilot:

To create a balanced diet primarily based on algae while minimizing the need for other foods, it’s essential to ensure that all nutritional needs are met. Here’s a rough guideline on how minimal the percentage of non-algae foods can be in terms of calories:

Macronutrient Distribution

  1. Protein: Algae like spirulina and chlorella are rich in protein, but to ensure a complete amino acid profile, you might need to supplement with other protein sources.

    • Algae: 50-60% of protein needs.
    • Other Sources: 10-15% of total calories (e.g., insects, legumes).
  2. Carbohydrates: Algae provide some carbohydrates, but additional sources are needed for energy.

    • Algae: 10-15% of carbohydrate needs.
    • Other Sources: 20-30% of total calories (e.g., grains, tubers).
  3. Fats: Algae contain essential fatty acids, but additional sources are necessary for a balanced intake.

    • Algae: 5-10% of fat needs.
    • Other Sources: 10-15% of total calories (e.g., nuts, seeds).

Total Caloric Intake

  • Algae: Approximately 65-75% of total calories.
  • Other Foods: Approximately 25-35% of total calories.

Example Breakdown

For a 2000-calorie diet:

  • Algae: 1300-1500 calories.
  • Other Foods: 500-700 calories.

Nutritional Balance

  • Protein: Ensure complete amino acids by combining algae with other protein sources.
  • Carbohydrates: Supplement with grains and tubers for energy.
  • Fats: Include nuts and seeds for healthy fats.

Practical Considerations

  • Variety: Incorporating a variety of foods helps prevent nutrient deficiencies and maintains psychological well-being.
  • Supplements: Use vitamin and mineral supplements to fill any gaps.

Long-Term Viability

Would you like more detailed information on any specific nutrient or food source?

1: Research on algae-based diets and their viability for long-term space missions.

 
 
 
 
You
Sent by you:
you totally excluded meat. Is it possible ?
 
Copilot
Usingthe web
Sent by Copilot:

Including meat in a space diet is certainly possible, though it comes with its own set of challenges. Here’s a more inclusive approach:

Including Meat in a Space Diet

  1. Cultured Meat:

    • Overview: Lab-grown or cultured meat is a promising solution for space missions. It can provide the necessary nutrients found in traditional meat without the need for raising animals.
    • Benefits: High in protein, essential amino acids, and other nutrients. It can be produced in a controlled environment, reducing the need for large spaces and resources.
  2. Traditional Meat:

    • Challenges: Raising animals in space is resource-intensive and requires significant space, water, and feed. However, small-scale animal farming or aquaculture could be considered for longer missions.
    • Benefits: Provides complete proteins, fats, vitamins, and minerals.

Adjusted Nutritional Breakdown

To include meat while still relying heavily on algae, here’s an adjusted breakdown:

  • Algae: Approximately 50-60% of total calories.
  • Meat: Approximately 10-15% of total calories.
  • Other Foods: Approximately 25-30% of total calories.

Example Breakdown for a 2000-Calorie Diet

  • Algae: 1000-1200 calories.
  • Meat: 200-300 calories.
  • Other Foods: 500-700 calories.

Practical Considerations

  • Variety: Including a mix of algae, meat, and other foods ensures a balanced diet.
  • Sustainability: Cultured meat and small-scale aquaculture can be more sustainable options for space missions.
  • Psychological Well-being: Having familiar foods like meat can help maintain morale and mental health during long missions.

Long-Term Viability

  • Experiments: Research on cultured meat is ongoing, and it shows promise for future space missions. Small-scale animal farming experiments have also been conducted to explore their feasibility in closed environments.

Would you like more details on cultured meat or any other specific aspect of this diet?

: Research on cultured meat for space missions. : Small-scale animal farming experiments in closed environments.

 
 
 
 
You
Sent by you:
Bearing in mind the diet just given, let assess the mass and space of biosphere per astronaut
 
Copilot
Usingthe web
Sent by Copilot:

To assess the mass and space requirements of a biosphere per astronaut, we need to consider the following components: algae cultivation, meat production (cultured or small-scale animal farming), and other food sources. Here’s a rough estimation:

Algae Cultivation

  • Space Requirements: Algae can be grown in bioreactors, which are compact and efficient.
    • Volume: Approximately 1-2 cubic meters per astronaut.
    • Mass: The bioreactor itself might weigh around 50-100 kg, with additional mass for water and nutrients.

Cultured Meat Production

  • Space Requirements: Cultured meat production can be done in bioreactors similar to those used for algae.
    • Volume: Approximately 1-2 cubic meters per astronaut.
    • Mass: The bioreactor and necessary equipment might weigh around 100-150 kg.

Other Food Sources

  • Hydroponics for Vegetables and Grains:
    • Space Requirements: Hydroponic systems can be stacked vertically to save space.
      • Volume: Approximately 2-3 cubic meters per astronaut.
      • Mass: The system, including water and nutrients, might weigh around 200-300 kg.

Total Space and Mass

  • Total Volume: Approximately 4-7 cubic meters per astronaut.
  • Total Mass: Approximately 350-550 kg per astronaut.

Additional Considerations

  • Waste Management: Efficient recycling systems are crucial to minimize waste and recycle nutrients.
  • Energy Requirements: These systems will require energy for lighting, temperature control, and operation of bioreactors.
  • Redundancy: Having backup systems is essential to ensure food production is not disrupted.

Example Setup

For a crew of 4 astronauts:

  • Total Volume: 16-28 cubic meters.
  • Total Mass: 1400-2200 kg.

These estimates provide a rough idea of the space and mass requirements for a sustainable biosphere per astronaut. The actual values may vary based on specific technologies and efficiencies.

Would you like more detailed calculations or information on any specific component?

 
 
 
 
You
Sent by you:
Amazing ! It seems affordable, but is very optimistic in my opinion. And how much energy is needed ?
 
Copilot
Usingthe web
Sent by Copilot:

You’re right; while the estimates are optimistic, they provide a starting point. Let’s delve into the energy requirements for maintaining such a biosphere:

Energy Requirements

  1. Algae Bioreactors:

  2. Cultured Meat Production:

  3. Hydroponic Systems:

Total Energy Estimate

For a single astronaut, considering the combined systems:

  • Algae Bioreactors: 250 watts (average) x 2 bioreactors = 500 watts.
  • Cultured Meat Bioreactors: 400 watts (average) x 2 bioreactors = 800 watts.
  • Hydroponic Systems: 250 watts (average) x 3 systems = 750 watts.

Total Energy Consumption: Approximately 2050 watts per astronaut.

Additional Considerations

  • Energy Storage: Batteries or other storage systems are needed to ensure a continuous power supply.
  • Redundancy: Backup power systems are essential to prevent disruptions.
  • Efficiency Improvements: Ongoing research aims to reduce energy consumption and improve the efficiency of these systems.

Practical Implementation

While these estimates provide a rough idea, actual energy needs may vary based on specific technologies and efficiencies. Continuous monitoring and optimization are crucial for maintaining a sustainable biosphere.

Would you like more detailed information on any specific component or further breakdowns?

1: Energy consumption estimates for LED grow lights and bioreactor systems. 2: Energy requirements for cultured meat production bioreactors.

 
 
 
 
You
Sent by you:
was there considered growing wood for construction parts?
 
Copilot
Usingthe web
Sent by Copilot:

Yes, the idea of growing wood for construction parts in space has been considered and even tested to some extent. Here are some key points:

Wood in Space Experiments

  1. LignoSat Project:

Potential Benefits

Challenges

  • Growth in Space: Growing trees in space would require significant resources and space. However, using pre-grown and treated wood could be a viable alternative.
  • Environmental Control: Maintaining the right conditions for wood growth and preservation in space would be complex.

Future Applications

Would you like more details on any specific aspect of using wood in space?

2: Japan developing wooden satellites to cut space junk. 1: Japan to launch world’s 1st wooden satellite in September.

  • Потребител
Публикува
Преди 3 минути, Димитър Йорданов said:

В разговора ти не видях да е засегнат въпроса с изкуствената фотосинтеза. Ето примери за нея. 

https://nauka.offnews.bg/zhivotat/nova-izkustvena-fotosinteza-e-10-pati-po-efektivna-ot-predishnite-op-192457.html

https://nauka.offnews.bg/zhivotat/sazdadoha-rastenia-s-usavarshenstvana-fotosinteza-120077.html

Всъщност в последните години там има голям напредък. Интересно какви ще са отговорите на чатбота, ако вземе предвид и нея, както и възможните продукти получени чрез нея (освен по-бързото производство и по голямото количество биомаса чрез нея. 

Не я разглеждам по причина, че не е ясно още колко дълъг живот и надеждност ще има фотосинтетичният реактор. Също дали е възможно да се пречисти крайния продукт за храна, от разните катализатори и др.веществ, които може да са отровни.

  • Потребител
Публикува (edited)
Преди 58 минути, Exhemus said:

Не я разглеждам по причина, че не е ясно още колко дълъг живот и надеждност ще има фотосинтетичният реактор. Също дали е възможно да се пречисти крайния продукт за храна, от разните катализатори и др.веществ, които може да са отровни.

Във втория линк става въпрос само за усъвършенстване на процеса на фотосинтеза, като там не става въпрос за производство на определени продукти на база изкуствена фотосинтеза. 

Замислих се, че освен изкуствено отглеждано месо и аква култури може за източник на месо да се ползват някои изключително бързо развиващи се животни. Някои видове мишки достигат полова зрялост на около 35-40 дни. Имат нужда от малко вода, и макар всеядни могат да се хранят изцяло и с растителна храна или остатъци от другите хранителни ресурси. Биха ли могли да се използват като един от източниците на месо заедно с насекоми и примерно риба (отглеждане на риба в космоса са опитвали САЩ, Китай, ако не греша и СССР). 

И ако е възможно това как би променило необходимата минимална площ и ресурси за всеки един астронавт и дали би си струвало. 

Редактирано от Димитър Йорданов
  • Потребител
Публикува (edited)
Преди 22 минути, Димитър Йорданов said:

Във втория линк става въпрос само за усъвършенстване на процеса на фотосинтеза, като там не става въпрос за производство на определени продукти на база изкуствена фотосинтеза. 

Замислих се, че освен изкуствено отглеждано месо и аква култури може за източник на месо да се ползват някои изключително бързо развиващи се животни. Някои видове мишки достигат полова зрялост на около 35-40 дни. Имат нужда от малко вода, и макар всеядни могат да се хранят изцяло и с растителна храна или остатъци от другите хранителни ресурси. Биха ли могли да се използват като един от източниците на месо заедно с насекоми и примерно риба (отглеждане на риба в космоса са опитвали САЩ, Китай, ако не греша и СССР). 

И ако е възможно това как би променило необходимата нинимална площ и ресурси за всеки един астронавт и дали би си струвало. 

Много държиш на изкуствената фотосинтеза.  :) Дали пишат, че тези големи КПДта са ги замерили докато всички реагенти са пресни и че след два дена реакторът погива и съдържанието му трябва да се изхвърли?

   Мишките са интересни, но зайците са от техния род и май имат същите параметри :)  ?  Пък и харесваме мръвчица от заек...  Ако сравняваме заек и бройлер, не знам кой ще има по-голямо КПД? Виждал съм зайци чистофайници, дето не хапват нещо паднало на земята, докато бройлерът с кеф дърпа глистиите от торът  :)

пс   Доколкото знам за един бройлер е необходимо 3-4 пъти теглото му зърно + още микронутриенти. Кравите май са с най-голямо КПД. Въобще по-големите животни.. За космоса дилемата е зайци или бройлери  :)

 

Редактирано от Exhemus
  • Потребител
Публикува
Преди 33 минути, Димитър Йорданов said:

Някои видове мишки

Задължително трябва да се проведат изследвания и опити с хора,(да,с хора),какво ще е въздействието върху човешкия организъм,ако той се храни само с месо от мишки.

  • Потребител
Публикува
Преди 13 минути, Exhemus said:

Много държиш на изкуствената фотосинтеза.  :) Дали пишат, че тези големи КПДта са ги замерили докато всички реагенти са пресни и че след два дена реакторът погива и съдържанието му трябва да се изхвърли?

   Мишките са интересни, но зайците са от техния род и май имат същите параметри :)  ?  Пък и харесваме мръвчица от заек...  Ако сравняваме заек и бройлер, не знам кой ще има по-голямо КПД? Виждал съм зайци чистофайници, дето не хапват нещо паднало на земята, докато бройлерът с кеф дърпа глистиите от торът  :)

пс   Доколкото знам за един бройлер е необходимо 3-4 пъти теглото му зърно + още микронутриенти. Кравите май са с най-голямо КПД. Въобще по-големите животни.. За космоса дилемата е зайци или бройлери  :)

 

В случая ми е интересно не твоето мнение, а на чатбота с който общуваш. Изрично съм написал, че във втория линк става дума за усъвършенствана фотосинтеза, а не изкуствена. Ако си отворил статията ще видиш, че това е нещо, което просто повишава ефективността ѝ, нищо повече. 

За зайци или бройлери не ги споменах, защото и едното и другото са капризни животни и лесно мрът. Докато мишките са малки, лесни за въдене и могат да ядат почти всичко. Освен това ги споменах като допълнителен източник на животински протеини, а не основни. Интересно ми е чатбота ти какво мисли за това, което засегнах тук. 

И поздравления за темата. Ще я следя с интерес. 

  • Потребител
Публикува
Преди 3 минути, Димитър Йорданов said:

Изрично съм написал, че във втория линк става дума за усъвършенствана фотосинтеза, а не изкуствена. Ако си отворил статията ще видиш, че това е нещо, което просто повишава ефективността ѝ, нищо повече. 

Така е, но ти ми отговори какво пишат твоите източници за  експлоатационния живот на реакторите за изкуствана фотосинтеза? Ако отговорът е два дена, не си струва да питам чатбота -  тази технология е още много зелена.  :)

пс понеже нямам регистрация, дневния лимит на отговори е много малък :(

  • Потребител
Публикува
Преди 6 минути, Exhemus said:

Така е, но ти ми отговори какво пишат твоите източници за  експлоатационния живот на реакторите за изкуствана фотосинтеза? Ако отговорът е два дена, не си струва да питам чатбота -  тази технология е още много зелена.  :)

пс понеже нямам регистрация, дневния лимит на отговори е много малък :(

Пак ще го напиша. Не говоря за изкуствена фотосинтеза или биореактори. А за нещо съвсем различно добре обяснено във втория (долния линк) от двата, които съм споделил по-горе. 

 

"

Създадоха растения с усъвършенствана фотосинтеза

Нов начин за генетично коригиране на фотосинтезата увеличава добива на културите" 

Става дума за това:

"Едно голямо постижение на генното инженерство опрости сложна, енергийно скъпа операция, която повечето растения трябва да изпълняват по време на процеса фотосинтеза. Това опростяване и ускоряване на ключови стъпки във фотосинтезата позволява да се произвеждат растения с повишена продуктивност, съобщава Science News.

По време на полеви тестове, генетично модифицираният по този начин тютюн увеличи растежа му с над 40%. Ако се стигне до подобни резултати при други култури, това би могло да помогне да се посрещнат нуждите от храна на нарастващото население в световен мащаб, пишат учените от Университета на Илинойс в Ърбана-Шапейн в статията си, публикувана в списание Science от 4 януари.

Фотосинтезата е поредица от реакции, които се извършват от растенията, цианобактериите и някои други организми, по време на които енергията на слънчевата светлина се използва за синтезиране на органични молекули от вода и въглероден диоксид.

Първата стъпка на този процес е фиксацията на атмосферния CO2 , която се извършва от ензима рибулозобисфосфаткарбоксилаза (РуБисКО). Неговата основна задача е да помогне за превръщането на въглеродния диоксид от атмосферата в захари, които подхранват растежа на растенията."

Точно затова те попитах дали чатбота е взел под внимание това, защото ако го е пропуснал коренно се променя резултата от изчисленията му. Както за количеството биомаса, което може да бъде отглеждано за определено време, така и за скоростта с което се изразходват суровините за отглеждането им.

А това същото може да се приложи и за други растения, които биха се отглеждали при подобни мисии. 

  • Потребител
Публикува (edited)
Преди 21 минути, Димитър Йорданов said:

Пак ще го напиша. Не говоря за изкуствена фотосинтеза или биореактори. А за нещо съвсем различно добре обяснено във втория (долния линк) от двата, които съм споделил по-горе. 

 

"

Създадоха растения с усъвършенствана фотосинтеза

Нов начин за генетично коригиране на фотосинтезата увеличава добива на културите" 

Става дума за това:

"Едно голямо постижение на генното инженерство опрости сложна, енергийно скъпа операция, която повечето растения трябва да изпълняват по време на процеса фотосинтеза. Това опростяване и ускоряване на ключови стъпки във фотосинтезата позволява да се произвеждат растения с повишена продуктивност, съобщава Science News.

По време на полеви тестове, генетично модифицираният по този начин тютюн увеличи растежа му с над 40%. Ако се стигне до подобни резултати при други култури, това би могло да помогне да се посрещнат нуждите от храна на нарастващото население в световен мащаб, пишат учените от Университета на Илинойс в Ърбана-Шапейн в статията си, публикувана в списание Science от 4 януари.

Фотосинтезата е поредица от реакции, които се извършват от растенията, цианобактериите и някои други организми, по време на които енергията на слънчевата светлина се използва за синтезиране на органични молекули от вода и въглероден диоксид.

Първата стъпка на този процес е фиксацията на атмосферния CO2 , която се извършва от ензима рибулозобисфосфаткарбоксилаза (РуБисКО). Неговата основна задача е да помогне за превръщането на въглеродния диоксид от атмосферата в захари, които подхранват растежа на растенията."

Точно затова те попитах дали чатбота е взел под внимание това, защото ако го е пропуснал коренно се променя резултата от изчисленията му. Както за количеството биомаса, което може да бъде отглеждано за определено време, така и за скоростта с което се изразходват суровините за отглеждането им.

А това същото може да се приложи и за други растения, които биха се отглеждали при подобни мисии. 

Не съм те разбрал.  Чатбота точно тези постижения не е засегнал, но дискутирахме, че повишаването концентрацията на СО2 вдига КПДто на растенията и водораслите. Ако са усъвършенствали ензима РУБИСКО, чиято основна задача е да концентрира въглеродния двуокис, който в атмосферата е в нищожна йонцентрация, те са напипали едно от тесните места на фотосинтезата. (любопитно - от това следва, че РУБИСКО е белтъкът представен с най-голям тонаж на земното кълбо)

    Чатботът поясни, че не всички растения се възползват еднакво от повишаването на концентрацията на СО2.  Това ме навежда на мисълта, че РУБИСКО при определена концентрация се насища и по-нагоре не е ефективен. Именно неговата модификация може да отмести тази граница към по-високи концентрации.

 

Редактирано от Exhemus
  • Потребител
Публикува

Питах го за изкуствената фотосинтеза, но не беше много конкретен:

You
Sent by you:
we did not touch the theme of artifical photosynthesis. What is state of the art ? Let's consider issues of reactors life, maintenance, product extraction and eventualy recycling expensive catalysts
 
Copilot
Usingthe web
Sent by Copilot:

Artificial photosynthesis is an exciting and rapidly advancing field. Here’s a summary of the current state of the art, along with considerations for reactor life, maintenance, product extraction, and recycling of catalysts:

State of the Art

  1. Efficiency Improvements:

  2. Catalyst Development:

  3. Applications:

Reactor Life and Maintenance

  1. Durability:

    • The longevity of artificial photosynthesis reactors depends on the materials used. Advances in durable and corrosion-resistant materials are crucial for extending reactor life.
    • Regular maintenance is required to ensure optimal performance, including cleaning and replacing parts as needed.
  2. Maintenance:

    • Maintenance involves monitoring the system for any signs of wear or inefficiency. Automated systems can help detect issues early and perform routine checks.
    • Ensuring a stable supply of reactants (e.g., water and carbon dioxide) and managing by-products are essential for continuous operation.

Product Extraction

  1. Separation Techniques:

    • Efficient separation techniques are needed to extract the desired products (e.g., fuels) from the reaction mixture. Methods like distillation, membrane separation, and adsorption are commonly used.
    • Advances in selective membranes and catalysts can improve the purity and yield of the extracted products.
  2. Storage and Utilization:

    • The extracted products need to be stored safely and utilized efficiently. For instance, produced fuels can be stored in tanks and used as needed.

Recycling Expensive Catalysts

  1. Catalyst Recovery:

    • Recycling expensive catalysts is crucial for the economic viability of artificial photosynthesis. Techniques like filtration, precipitation, and electrochemical recovery are used to reclaim catalysts from the reaction mixture.
    • Advances in catalyst design aim to enhance their stability and recyclability, reducing the need for frequent replacement.
  2. Sustainability:

    • Developing catalysts from abundant and non-toxic materials can reduce costs and environmental impact. Research is ongoing to find more sustainable alternatives to precious metal catalysts.

Challenges and Future Prospects

  • Scalability: Scaling up artificial photosynthesis systems for industrial applications remains a challenge. Research is focused on developing scalable and cost-effective solutions.
  • Integration: Integrating artificial photosynthesis with existing energy and agricultural systems can enhance sustainability and efficiency.
  • Innovation: Continuous innovation in materials science, catalysis, and reactor design is essential for overcoming current limitations and realizing the full potential of artificial photosynthesis.

Would you like more detailed information on any specific aspect of artificial photosynthesis?

1: University of Chicago’s advancements in artificial photosynthesis. 2: Review on recent developments in artificial photosynthesis catalysts. 4: NASA’s experiments with artificial photosynthesis. 3: MIT’s light-driven photocatalysts mimicking photosynthesis.

  • Потребител
Публикува

   Вдигането на КПД по линията на въглеродния двуокис не е безгранично. В един момент лимитиращ фактор ще е някой друг ензим.

  Може да е хлорофилът? Както знаем и той си има своите капризи. За да разцепи водната молекула са му необходими 4 фотона червена светлина.

Обаче, възбуждането му от първия фотон трае някакви милисекунди. През това време трябва да го ударят 2,3 и 4тия фотон за да имаме реакция.

Това значи, че растенията при определена тъмнина не фотосинтезират. При много силна светлина също не фотосинтезират - сигурно се получава лазерен ефект- стимулирано излъчване на вече приетите фотони и условието за реакция не може да се достигне.

  Но някой ензим по средата може да е още по-капризен  :)

Напиши мнение

Може да публикувате сега и да се регистрирате по-късно. Ако вече имате акаунт, влезте от ТУК , за да публикувате.

Guest
Напиши ново мнение...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Вашето предишно съдържание е възстановено.   Изчистване на редактора

×   You cannot paste images directly. Upload or insert images from URL.

Зареждане...

За нас

"Форум Наука" е онлайн и поддържа научни, исторически и любопитни дискусии с учени, експерти, любители, учители и ученици.

За своята близо двайсет годишна история "Форум Наука" се утвърди като мост между тези, които знаят и тези, които искат да знаят. Всеки ден тук влизат хиляди, които търсят своя отговор.  Форумът е богат да информация и безкрайни дискусии по различни въпроси.

Подкрепи съществуването на форумa - направи дарение:

Дари

 

 

За контакти:

×
×
  • Create New...
×

Подкрепи форума!

Твоето дарение ще ни помогне да запазим и поддържаме това място за обмяна на знания и идеи. Благодарим ти!