Отиди на
Форум "Наука"

Recommended Posts

  • 1 месец по късно...
  • Потребител
Публикува
Време-пространство, светла-излъчваща и тъмна-поглъщаща материя като част от множество-ТОР окачено към гравитационен център

scan0016.bmp

ВРЕМЕ – ПРОСТРАНСТВО

В светлината на ОТБСВ обединяването на времето и пространството, като единна обективна същност е най – голямата заблуда в съвременното познание, по отношение на която ще трябва да “изтече много вода” до като се разбере това.

Пространството е част от характеристиката на всеобщата, безначална и безкрайна базова същност на Всемира, необяснима с нищо друго освен със самата си същност, но обясняваща всичко, което реално съществува. То има само измерение и никакви качества и свойства и характеризира тази вечна същност, като всеобщо вместилище ,в което се намира всичко и извън което няма и не може да има наличие на каквато да било реалност, включително и Бог.

Времето е продукт и измерение на движението, което характеризира всеобщата базова същност на Вечността / на Всемира, на Бота/, като единствен творец, без който нищо не може да бъде изградено, да съществува и разрушено.

Без движението няма и не може да има изминат път. Без изминат път няма и ни може да има часовник и отчитане на време. Който не е съгласен с това трябва да може обективно и достоверно да посочи часовник , които да работи без движение и без наличие на какъвто и да било път.

Още по голяма заблуда е, когато на пространството и времето се преписват свойства , разширение, изкривяване, удължаване и пр.

Може структурите на базовата същност на Вечността, от която и в която произтича всичко и която се намира във всичко да заеме по голяма или по малко пространство, но самото пространство да се разшири и ли свие е чиста заблуда. Това е равнозначно, че в кухните в които се приготвя храна с разширяването на парата се разширява пространството на кухните.

Чудно нещо е как хората, когато се задълбочават в своето мислене се откъсват от конкретните реалности и политат извън тях и попадат, като патета в кълчища ,мъчейки се с мисли и изводи, без реално покритие да обясняват конкретни реалности, вместо да ги анализират конкретно и достоверно такива, каквито те са.

Ако движението, като единствен творец, който твори само с един единствен механизъм , като сблъсква структурите на базовата същност на Вечността и осигурява безкрайното разнообразие от форми и структури във Всемира е чудо за чудене, не по малко чедо е и човешката мисъл, която също е продукт на движението, без което не може изобщо да я има. Нейните пътища към обективната истина и към заблудите също се безбройни. Безбройни не само във вяра и религия, но и в обективното познание, в което не рядко заблуди, като неподвижната земя, неделимостта на атома и пр. господствуват в съзнанието на хората за хилядолетия.

ОТБСВ предоставя една солидна база за преодоляване на много заблуди, но наред с това тя ни посочва, че заблудите също имат своя обективен произход от базовата същност на Вечността, когато заблуди се вземат за обективни истини и на базата на тях се извършват математически и други анализи, което води не до истини, а до нови заблуди. Например, при неподвижно слънце пътищата на планетите са затворени орбити, каквито те не са, защото слънцето не е неподвижно. Приемането на скоростта на светлината с която тя излита от съответните източници, без са се отчита нейната относителност води до погрешни изводи, включително до заблудата ,че масата на телата зависи от скоростта с която се движат.

Повече информация в gmihov.blog.bg.

  • 4 месеца по късно...
  • Потребител
Публикува

Движението по зтворената спирала около Торът преминава от Вход-Изход (точка на големия взрив)с движение във вертикала .Тук енергията влиза в условия на разпънатост и движението се ускорява-разширява .След преминаване на върха на тора забавя-разширява докато спре в покой на покойната линия.След покоя енергиятя влиза в условия на свиване където се трансформира с качества на тъмна материя

  • 1 месец по късно...
  • Потребител
Публикува

Как ще коментирате разглеждането на Айнщайн в теорията на относителноста, че времето е четвъртата координата на пространството, и фотоните се движат само в трите пространственни координати но не и във четвъртата времева координата, и затова за тях времето не тече, те са на нулева възраст! :happy:

  • Потребител
Публикува

Как ще коментирате разглеждането на Айнщайн в теорията на относителноста, че времето е четвъртата координата на пространството, и фотоните се движат само в трите пространственни координати но не и във четвъртата времева координата, и затова за тях времето не тече, те са на нулева възраст! :happy:

Не, при Айнщайн - времето не е четвърта координата.

Вж формулката в др. теми за дължината на интервала в четиримерното пространство-време - там показах кое е четвъртото измерение.

... (с*t)^2

Това има дименсия на дължина и затова е "четвърто" измерение, ама в пространството на Минковски. Времето е "собствено" време на това пространство-време.

...

  • Потребител
Публикува

Не, при Айнщайн - времето не е четвърта координата.

Вж формулката в др. теми за дължината на интервала в четиримерното пространство-време - там показах кое е четвъртото измерение.

... (с*t)^2

Това има дименсия на дължина и затова е "четвърто" измерение, ама в пространството на Минковски. Времето е "собствено" време на това пространство-време.

...

Няма друг начин освен да е четвърта координата, :vertag: щом айнщайн разглежда пространството и времето като едно неделимо цяло
  • Глобален Модератор
Публикува

Няма друг начин освен да е четвърта координата, vertag.gif щом айнщайн разглежда пространството и времето като едно неделимо цяло

Здравей любознателния,

Може би малко те заблудих с това, че не уточних, че това е идея на Херман Минковски.

Съжалявам за което.

Ето малко инфо от wikipedia... просто копи - пейст

Роденият в Русия математик Херман Минковски (1864 - 1909) предлага през 1908 г. нов начин за представяне на пространствено-временните взаимовръзки, използвайки 4-измерна координатна система. В тази смесена координатна система "инвариантния" време-пространствен интервал изпълнява същата роля, която изпълнява разстоянието в обикновената 3-измерна координатна система. Правейки това предложение Минковски не е търсел да промени в Специалната теория на относителността, която по онова време е била едва на 3 години. По-скоро той показва нещата от по-различен ъгъл. Геометрията на Минковски се различава коренно от познатата ни Евклидова геометрия. В обикновената геометрия разстоянието между две точки е една от основните характеристики на това пространство и това разстояние е винаги положително.

Повече информация може да бъде намерена на уеб адрес:

Геометрия на Минковски

Поздрави Б.

  • Потребител
Публикува

Здравей любознателния,

Може би малко те заблудих с това, че не уточних, че това е идея на Херман Минковски.

Съжалявам за което.

Ето малко инфо от wikipedia... просто копи - пейст

Роденият в Русия математик Херман Минковски (1864 - 1909) предлага през 1908 г. нов начин за представяне на пространствено-временните взаимовръзки, използвайки 4-измерна координатна система. В тази смесена координатна система "инвариантния" време-пространствен интервал изпълнява същата роля, която изпълнява разстоянието в обикновената 3-измерна координатна система. Правейки това предложение Минковски не е търсел да промени в Специалната теория на относителността, която по онова време е била едва на 3 години. По-скоро той показва нещата от по-различен ъгъл. Геометрията на Минковски се различава коренно от познатата ни Евклидова геометрия. В обикновената геометрия разстоянието между две точки е една от основните характеристики на това пространство и това разстояние е винаги положително.

Повече информация може да бъде намерена на уеб адрес:

Геометрия на Минковски

Поздрави Б.

Благодаря за инфото, май ще стана Айнщайнист :biggrin: Тази геометрия на Минковски ми хареса, и е интересна, а и обяснява по пълно относителната едновременност на събитията :biggrin: Трябва и Петков да разбере че може да съществува относителната едновременност на събитията :vertag: Показва го време подобното съотношение на събитията :biggrin: значи Минковски заменя една от трите пространственни оси с времева ос. И това е инвариянтното времепространство , а не както аз си мислех първоначално, че към трите пространственни се добавя и времевата :unsure: Това определено ми харесва, много интересна геометрия, дали Минковски я е измислил преди ТО. Може да я е измислил преди ТО и после като възниква ТО да я е използвал и Айнщайн.
  • Потребител
Публикува

Благодаря за инфото, май ще стана Айнщайнист :biggrin: Тази геометрия на Минковски ми хареса, и е интересна, а и обяснява по пълно относителната едновременност на събитията :biggrin: Трябва и Петков да разбере че може да съществува относителната едновременност на събитията :vertag: Показва го време подобното съотношение на събитията :biggrin: значи Минковски заменя една от трите пространственни оси с времева ос. И това е инвариянтното времепространство , а не както аз си мислех първоначално, че към трите пространственни се добавя и времевата :unsure: Това определено ми харесва, много интересна геометрия, дали Минковски я е измислил преди ТО. Може да я е измислил преди ТО и после като възниква ТО да я е използвал и Айнщайн.

Е, време ти е вече за Четвъртото измерение:

Към нови перспективи

пп Книжката е издадена през 1963г - ама "проблемите" са като ... сегашни! :biggrin:

Беше забранена, разбира се, ама преди да се усетят я бяха пуснали вече на пазара и ... в библиотеките я туриха в раздел "Детска литература" с надеждата да не бъде четена.

  • Потребител
Публикува

Е, време ти е вече за Четвъртото измерение:

Към нови перспективи

пп Книжката е издадена през 1963г - ама "проблемите" са като ... сегашни! :biggrin:

Беше забранена, разбира се, ама преди да се усетят я бяха пуснали вече на пазара и ... в библиотеките я туриха в раздел "Детска литература" с надеждата да не бъде четена.

само не разбрах, това антикомунистическа книга ли е била по онова време :happy:
  • Потребител
Публикува

само не разбрах, това антикомунистическа книга ли е била по онова време :happy:

Кажи първо, хареса ли ти Четвъртото измерение...

Има отделни разкази, които усмиват еуфорията от "новия" строй - постиженията му и перспективите. Сигурно не знаеш, ама се твърдеше през седемдесетте години, че осемдесета година всеки ще разполага със собствен хеликоптер и ... др. подобни... агитации.

Ако ти е интересно:

"Да не обиждаме спираловидните хора"

"Въпрос на нерви"

"И това не е живот"

"Жертва на славата"

и др.

Сам авторът, в "Средговор", обяснява защо пише така ... с хумор.

...

  • Потребител
Публикува

Кажи първо, хареса ли ти Четвъртото измерение...

Има отделни разкази, които усмиват еуфорията от "новия" строй - постиженията му и перспективите. Сигурно не знаеш, ама се твърдеше през седемдесетте години, че осемдесета година всеки ще разполага със собствен хеликоптер и ... др. подобни... агитации.

Ако ти е интересно:

"Да не обиждаме спираловидните хора"

"Въпрос на нерви"

"И това не е живот"

"Жертва на славата"

и др.

Сам авторът, в "Средговор", обяснява защо пише така ... с хумор.

...

ами пускай не са лоши, но пак не разбрах, това антикомунистическа литература ли е?
  • Потребител
Публикува
В светлината на ОТБСВ обединяването на времето и пространството, като единна обективна същност е най – голямата заблуда в съвременното познание, по отношение на която ще трябва да “изтече много вода” до като се разбере това.

Отдавна е изтекла тази вода - жреците на Айнщайниана са наясно и даже правят пари и кариера като отричат пространство-времето:

http://www.newscientist.com/article/mg20727721.200-rethinking-einstein-the-end-of-spacetime.html

NEW SCIENTIST: "Rethinking Einstein: The end of space-time. IT WAS a speech that changed the way we think of space and time. The year was 1908, and the German mathematician Hermann Minkowski had been trying to make sense of Albert Einstein's hot new idea - what we now know as special relativity - describing how things shrink as they move faster and time becomes distorted. "Henceforth space by itself and time by itself are doomed to fade into the mere shadows," Minkowski proclaimed, "and only a union of the two will preserve an independent reality." And so space-time - the malleable fabric whose geometry can be changed by the gravity of stars, planets and matter - was born. It is a concept that has served us well, but if physicist Petr Horava is right, it may be no more than a mirage. (...) Something has to give in this tussle between general relativity and quantum mechanics, and the smart money says that it's relativity that will be the loser."

http://www.homevalley.co.za/index.php?option=com_content&view=article&id=135:its-likely-that-times-are-changing

"Einstein introduced a new notion of time, more radical than even he at first realized. In fact, the view of time that Einstein adopted was first articulated by his onetime math teacher in a famous lecture delivered one century ago. That lecture, by the German mathematician Hermann Minkowski, established a new arena for the presentation of physics, a new vision of the nature of reality redefining the mathematics of existence. The lecture was titled Space and Time, and it introduced to the world the marriage of the two, now known as spacetime. It was a good marriage, but lately physicists passion for spacetime has begun to diminish. And some are starting to whisper about possible grounds for divorce. (...) Physicists of the 21st century therefore face the task of finding the true reality obscured by the spacetime mirage. (...) What he and other pioneers on the spacetime frontiers have seen coming is an intellectual crisis. The approaches of the past seem insufficiently powerful to meet the challenges remaining from Einstein's century - such as finding a harmonious mathematical marriage for relativity with quantum mechanics the way Minkowski unified space and time. And more recently physicists have been forced to confront the embarrassment of not knowing what makes up the vast bulk of matter and energy in the universe. They remain in the dark about the nature of the dark energy that drives the universe to expand at an accelerating rate. Efforts to explain the dark energy's existence and intensity have been ambitious but fruitless. To Albrecht, the dark energy mystery suggests that it's time for physics to drop old prejudices about how nature's laws ought to be and search instead for how they really are. And that might mean razing Minkowski's arena and rebuilding it from a new design. It seems to me like it's a time in the development of physics, says Albrecht, where it's time to look at how we think about space and time very differently."

http://philsci-archive.pitt.edu/archive/00001661/

MINKOWSKI SPACE-TIME: A GLORIOUS NON-ENTITY

Harvey R. Brown, Oliver Pooley

"It is argued that Minkowski space-time cannot serve as the deep structure within a "constructive" version of the special theory of relativity, contrary to widespread opinion in the philosophical community."

http://www.scientificamerican.com/article.cfm?id=is-time-an-illusion

Craig Callender in SCIENTIFIC AMERICAN: "Einstein mounted the next assault by doing away with the idea of absolute simultaneity. According to his special theory of relativity, what events are happening at the same time depends on how fast you are going. The true arena of events is not time or space, but their union: spacetime. Two observers moving at different velocities disagree on when and where an event occurs, but they agree on its spacetime location. Space and time are secondary concepts that, as mathematician Hermann Minkowski, who had been one of Einstein's university professors, famously declared, "are doomed to fade away into mere shadows." And things only get worse in 1915 with Einstein's general theory of relativity, which extends special relativity to situations where the force of gravity operates. Gravity distorts time, so that a second's passage here may not mean the same thing as a second's passage there. Only in rare cases is it possible to synchronize clocks and have them stay synchronized, even in principle. You cannot generally think of the world as unfolding, tick by tick, according to a single time parameter. In extreme situations, the world might not be carvable into instants of time at all. It then becomes impossible to say that an event happened before or after another."

http://www.newscientist.com/article/mg20026831.500-what-makes-the-universe-tick.html

"General relativity knits together space, time and gravity. Confounding all common sense, how time passes in Einstein's universe depends on what you are doing and where you are. Clocks run faster when the pull of gravity is weaker, so if you live up a skyscraper you age ever so slightly faster than you would if you lived on the ground floor, where Earth's gravitational tug is stronger. "General relativity completely changed our understanding of time," says Carlo Rovelli, a theoretical physicist at the University of the Mediterranean in Marseille, France. (...) It is still not clear who is right, says John Norton, a philosopher based at the University of Pittsburgh, Pennsylvania. Norton is hesitant to express it, but his instinct - and the consensus in physics - seems to be that space and time exist on their own. The trouble with this idea, though, is that it doesn't sit well with relativity, which describes space-time as a malleable fabric whose geometry can be changed by the gravity of stars, planets and matter."

http://www.pitt.edu/~jdnorton/Goodies/passage/index.html

John Norton: "A common belief among philosophers of physics is that the passage of time of ordinary experience is merely an illusion. The idea is seductive since it explains away the awkward fact that our best physical theories of space and time have yet to capture this passage. I urge that we should resist the idea. We know what illusions are like and how to detect them. Passage exhibits no sign of being an illusion....Following from the work of Einstein, Minkowski and many more, physics has given a wonderfully powerful conception of space and time. Relativity theory, in its most perspicacious form, melds space and time together to form a four-dimensional spacetime. The study of motion in space and and all other processes that unfold in them merely reduce to the study of an odd sort of geometry that prevails in spacetime. In many ways, time turns out to be just like space. In this spacetime geometry, there are differences between space and time. But a difference that somehow captures the passage of time is not to be found. There is no passage of time. There are temporal orderings. We can identify earlier and later stages of temporal processes and everything in between. What we cannot find is a passing of those stages that recapitulates the presentation of the successive moments to our consciousness, all centered on the one preferred moment of "now." At first, that seems like an extraordinary lacuna. It is, it would seem, a failure of our best physical theories of time to capture one of time's most important properties. However the longer one works with the physics, the less worrisome it becomes. (...) I was, I confess, a happy and contented believer that passage is an illusion. It did bother me a little that we seemed to have no idea of just how the news of the moments of time gets to be rationed to consciousness in such rigid doses. (...) Now consider the passage of time. Is there a comparable reason in the known physics of space and time to dismiss it as an illusion? I know of none. The only stimulus is a negative one. We don't find passage in our present theories and we would like to preserve the vanity that our physical theories of time have captured all the important facts of time. So we protect our vanity by the stratagem of dismissing passage as an illusion."

Pentcho Valev

pvalev@yahoo.com

  • Потребител
Публикува

Отдавна е изтекла тази вода - жреците на Айнщайниана са наясно и даже правят пари и кариера като отричат пространство-времето:

http://www.newscientist.com/article/mg20727721.200-rethinking-einstein-the-end-of-spacetime.html

NEW SCIENTIST: "Rethinking Einstein: The end of space-time. IT WAS a speech that changed the way we think of space and time. The year was 1908, and the German mathematician Hermann Minkowski had been trying to make sense of Albert Einstein's hot new idea - what we now know as special relativity - describing how things shrink as they move faster and time becomes distorted. "Henceforth space by itself and time by itself are doomed to fade into the mere shadows," Minkowski proclaimed, "and only a union of the two will preserve an independent reality." And so space-time - the malleable fabric whose geometry can be changed by the gravity of stars, planets and matter - was born. It is a concept that has served us well, but if physicist Petr Horava is right, it may be no more than a mirage. (...) Something has to give in this tussle between general relativity and quantum mechanics, and the smart money says that it's relativity that will be the loser."

http://www.homevalley.co.za/index.php?option=com_content&view=article&id=135:its-likely-that-times-are-changing

"Einstein introduced a new notion of time, more radical than even he at first realized. In fact, the view of time that Einstein adopted was first articulated by his onetime math teacher in a famous lecture delivered one century ago. That lecture, by the German mathematician Hermann Minkowski, established a new arena for the presentation of physics, a new vision of the nature of reality redefining the mathematics of existence. The lecture was titled Space and Time, and it introduced to the world the marriage of the two, now known as spacetime. It was a good marriage, but lately physicists passion for spacetime has begun to diminish. And some are starting to whisper about possible grounds for divorce. (...) Physicists of the 21st century therefore face the task of finding the true reality obscured by the spacetime mirage. (...) What he and other pioneers on the spacetime frontiers have seen coming is an intellectual crisis. The approaches of the past seem insufficiently powerful to meet the challenges remaining from Einstein's century - such as finding a harmonious mathematical marriage for relativity with quantum mechanics the way Minkowski unified space and time. And more recently physicists have been forced to confront the embarrassment of not knowing what makes up the vast bulk of matter and energy in the universe. They remain in the dark about the nature of the dark energy that drives the universe to expand at an accelerating rate. Efforts to explain the dark energy's existence and intensity have been ambitious but fruitless. To Albrecht, the dark energy mystery suggests that it's time for physics to drop old prejudices about how nature's laws ought to be and search instead for how they really are. And that might mean razing Minkowski's arena and rebuilding it from a new design. It seems to me like it's a time in the development of physics, says Albrecht, where it's time to look at how we think about space and time very differently."

http://philsci-archive.pitt.edu/archive/00001661/

MINKOWSKI SPACE-TIME: A GLORIOUS NON-ENTITY

Harvey R. Brown, Oliver Pooley

"It is argued that Minkowski space-time cannot serve as the deep structure within a "constructive" version of the special theory of relativity, contrary to widespread opinion in the philosophical community."

http://www.scientificamerican.com/article.cfm?id=is-time-an-illusion

Craig Callender in SCIENTIFIC AMERICAN: "Einstein mounted the next assault by doing away with the idea of absolute simultaneity. According to his special theory of relativity, what events are happening at the same time depends on how fast you are going. The true arena of events is not time or space, but their union: spacetime. Two observers moving at different velocities disagree on when and where an event occurs, but they agree on its spacetime location. Space and time are secondary concepts that, as mathematician Hermann Minkowski, who had been one of Einstein's university professors, famously declared, "are doomed to fade away into mere shadows." And things only get worse in 1915 with Einstein's general theory of relativity, which extends special relativity to situations where the force of gravity operates. Gravity distorts time, so that a second's passage here may not mean the same thing as a second's passage there. Only in rare cases is it possible to synchronize clocks and have them stay synchronized, even in principle. You cannot generally think of the world as unfolding, tick by tick, according to a single time parameter. In extreme situations, the world might not be carvable into instants of time at all. It then becomes impossible to say that an event happened before or after another."

http://www.newscientist.com/article/mg20026831.500-what-makes-the-universe-tick.html

"General relativity knits together space, time and gravity. Confounding all common sense, how time passes in Einstein's universe depends on what you are doing and where you are. Clocks run faster when the pull of gravity is weaker, so if you live up a skyscraper you age ever so slightly faster than you would if you lived on the ground floor, where Earth's gravitational tug is stronger. "General relativity completely changed our understanding of time," says Carlo Rovelli, a theoretical physicist at the University of the Mediterranean in Marseille, France. (...) It is still not clear who is right, says John Norton, a philosopher based at the University of Pittsburgh, Pennsylvania. Norton is hesitant to express it, but his instinct - and the consensus in physics - seems to be that space and time exist on their own. The trouble with this idea, though, is that it doesn't sit well with relativity, which describes space-time as a malleable fabric whose geometry can be changed by the gravity of stars, planets and matter."

http://www.pitt.edu/~jdnorton/Goodies/passage/index.html

John Norton: "A common belief among philosophers of physics is that the passage of time of ordinary experience is merely an illusion. The idea is seductive since it explains away the awkward fact that our best physical theories of space and time have yet to capture this passage. I urge that we should resist the idea. We know what illusions are like and how to detect them. Passage exhibits no sign of being an illusion....Following from the work of Einstein, Minkowski and many more, physics has given a wonderfully powerful conception of space and time. Relativity theory, in its most perspicacious form, melds space and time together to form a four-dimensional spacetime. The study of motion in space and and all other processes that unfold in them merely reduce to the study of an odd sort of geometry that prevails in spacetime. In many ways, time turns out to be just like space. In this spacetime geometry, there are differences between space and time. But a difference that somehow captures the passage of time is not to be found. There is no passage of time. There are temporal orderings. We can identify earlier and later stages of temporal processes and everything in between. What we cannot find is a passing of those stages that recapitulates the presentation of the successive moments to our consciousness, all centered on the one preferred moment of "now." At first, that seems like an extraordinary lacuna. It is, it would seem, a failure of our best physical theories of time to capture one of time's most important properties. However the longer one works with the physics, the less worrisome it becomes. (...) I was, I confess, a happy and contented believer that passage is an illusion. It did bother me a little that we seemed to have no idea of just how the news of the moments of time gets to be rationed to consciousness in such rigid doses. (...) Now consider the passage of time. Is there a comparable reason in the known physics of space and time to dismiss it as an illusion? I know of none. The only stimulus is a negative one. We don't find passage in our present theories and we would like to preserve the vanity that our physical theories of time have captured all the important facts of time. So we protect our vanity by the stratagem of dismissing passage as an illusion."

Pentcho Valev

pvalev@yahoo.com

бихте ли публикували нещо по темата на български, ще ви бъда много благодарен :bigwink:
  • Потребител
Публикува

Ето едно кратко резюме. Пространство-времето е обобщение на абсурдните следствия на погрешния втори постулат на Айнщайн от 1905 г. То влиза в общата теория но самият втори постулат, отделно взет, не влиза - през 1907 Айнщайн тайно го зарязва като приема че скоростта на светлината варира с гравитационния потенциал, V, в съответствие с уравнението c'=c(1+V/c^2) зададено от емисионната теория на Нютон. Така, що се касае до скоростта на светлината, от 1907 до 1915 Айнщайн ползва емисионната теория, после слага един коефициент, 2, и уравнението окончателно става c'=c(1+2V/c^2). Може да се докаже че "the gravitational redshift factor", 1+V/c^2, потвърден експериментално през 1960 от Pound и Rebka, е в съгласие с c'=c(1+V/c^2) и отхвърля както c'=c(1+2V/c^2) така и погрешния втори постулат на Айнщайн от 1905 г. (разбира се в шизофренния свят на Айнщайниана всички експерименти славно потвърждават Divine Albert's Divine Theory и опровергават всички други теории):

http://www.blazelabs.com/f-g-gcont.asp

"So, faced with this evidence most readers must be wondering why we learn about the importance of the constancy of speed of light. Did Einstein miss this? Sometimes I find out that what's written in our textbooks is just a biased version taken from the original work, so after searching within the original text of the theory of GR by Einstein, I found this quote: "In the second place our result shows that, according to the general theory of relativity, the law of the constancy of the velocity of light in vacuo, which constitutes one of the two fundamental assumptions in the special theory of relativity and to which we have already frequently referred, cannot claim any unlimited validity. A curvature of rays of light can only take place when the velocity of propagation of light varies with position. Now we might think that as a consequence of this, the special theory of relativity and with it the whole theory of relativity would be laid in the dust. But in reality this is not the case. We can only conclude that the special theory of relativity cannot claim an unlimited domain of validity ; its results hold only so long as we are able to disregard the influences of gravitational fields on the phenomena (e.g. of light)." - Albert Einstein (1879-1955) - The General Theory of Relativity: Chapter 22 - A Few Inferences from the General Principle of Relativity-. Today we find that since the Special Theory of Relativity unfortunately became part of the so called mainstream science, it is considered a sacrilege to even suggest that the speed of light be anything other than a constant. This is somewhat surprising since even Einstein himself suggested in a paper "On the Influence of Gravitation on the Propagation of Light," Annalen der Physik, 35, 1911, that the speed of light might vary with the gravitational potential. Indeed, the variation of the speed of light in a vacuum or space is explicitly shown in Einstein's calculation for the angle at which light should bend upon the influence of gravity. One can find his calculation in his paper. The result is c'=c(1+V/c^2) where V is the gravitational potential relative to the point where the measurement is taken. 1+V/c^2 is also known as the GRAVITATIONAL REDSHIFT FACTOR."

Пенчо Вълев

pvalev@yahoo.com

бихте ли публикували нещо по темата на български, ще ви бъда много благодарен :bigwink:

  • Потребител
Публикува

Ето едно кратко резюме. Пространство-времето е обобщение на абсурдните следствия на погрешния втори постулат на Айнщайн от 1905 г. То влиза в общата теория но самият втори постулат,

отделно взет, не влиза - през 1907 Айнщайн тайно го зарязва като приема че скоростта на светлината варира с гравитационния потенциал, V, в съответствие с уравнението c'=c(1+V/c^2) зададено от емисионната теория на Нютон. Така, що се касае до скоростта на светлината, от 1907 до 1915 Айнщайн ползва емисионната теория, после слага един коефициент, 2, и уравнението окончателно става c'=c(1+2V/c^2). Може да се докаже че "the gravitational redshift factor", 1+V/c^2, потвърден експериментално през 1960 от Pound и Rebka, е в съгласие с c'=c(1+V/c^2) и отхвърля както c'=c(1+2V/c^2) така и погрешния втори постулат на Айнщайн от 1905 г. (разбира се в шизофренния свят на Айнщайниана всички експерименти славно потвърждават Divine Albert's Divine Theory и опровергават всички други теории):

http://www.blazelabs.com/f-g-gcont.asp

"So, faced with this evidence most readers must be wondering why we learn about the importance of the constancy of speed of light. Did Einstein miss this? Sometimes I find out that what's written in our textbooks is just a biased version taken from the original work, so after searching within the original text of the theory of GR by Einstein, I found this quote: "In the second place our result shows that, according to the general theory of relativity, the law of the constancy of the velocity of light in vacuo, which constitutes one of the two fundamental assumptions in the special theory of relativity and to which we have already frequently referred, cannot claim any unlimited validity. A curvature of rays of light can only take place when the velocity of propagation of light varies with position. Now we might think that as a consequence of this, the special theory of relativity and with it the whole theory of relativity would be laid in the dust. But in reality this is not the case. We can only conclude that the special theory of relativity cannot claim an unlimited domain of validity ; its results hold only so long as we are able to disregard the influences of gravitational fields on the phenomena (e.g. of light)." - Albert Einstein (1879-1955) - The General Theory of Relativity: Chapter 22 - A Few Inferences from the General Principle of Relativity-. Today we find that since the Special Theory of Relativity unfortunately became part of the so called mainstream science, it is considered a sacrilege to even suggest that the speed of light be anything other than a constant. This is somewhat surprising since even Einstein himself suggested in a paper "On the Influence of Gravitation on the Propagation of Light," Annalen der Physik, 35, 1911, that the speed of light might vary with the gravitational potential. Indeed, the variation of the speed of light in a vacuum or space is explicitly shown in Einstein's calculation for the angle at which light should bend upon the influence of gravity. One can find his calculation in his paper. The result is c'=c(1+V/c^2) where V is the gravitational potential relative to the point where the measurement is taken. 1+V/c^2 is also known as the GRAVITATIONAL REDSHIFT FACTOR."

Пенчо Вълев

pvalev@yahoo.com

  • Потребител
Публикува
това означава ли че айнщайн е приел че скоростта на светлината може да бъде варираща, тоест да зависи от гравитационното поле, и ако е така скороктта на светлината азтоматично става зависима и от ускорението на системата излъчваща светлината

Не точно. Следният аргумент е валиден:

ПРЕДПОСТАВКА: Скоростта на светлината варира с гравитационния потенциал, V, в съответствие с уравнението c'=c(1+V/c^2).

ЗАКЛЮЧЕНИЕ: Скоростта на светлината варира със скоростта на наблюдателя, v, в съответствие с уравнението c'=c+v.

И двете уравнения, c'=c(1+V/c^2) и c'=c+v, принадлежат на емисионната теория на Нютон.

Пенчо Вълев

pvalev@yahoo.com

  • Потребител
Публикува

Не точно. Следният аргумент е валиден:

ПРЕДПОСТАВКА: Скоростта на светлината варира с гравитационния потенциал, V, в съответствие с уравнението c'=c(1+V/c^2).

ЗАКЛЮЧЕНИЕ: Скоростта на светлината варира със скоростта на наблюдателя, v, в съответствие с уравнението c'=c+v.

И двете уравнения, c'=c(1+V/c^2) и c'=c+v, принадлежат на емисионната теория на Нютон.

бихте ли ме запознали със тази теория :vertag:

Пенчо Вълев

pvalev@yahoo.com

  • Потребител
Публикува

И двете уравнения, c'=c(1+V/c^2) и c'=c+v, принадлежат на емисионната теория на Нютон.

Емисионната теория на Нютон се състои от всички следствия на допускането че скоростта на светлината ЗАВИСИ от скоростта на източника, така както скоростта на камъка хвърлен от движещ се влак зависи от скоростта на влака. Постигнала е големи успехи през 18-ти век, след това е била напълно забравена. Има един глупав но популярен френски релативист, Jean Eisenstaedt, който печели добре като я прославя (в шизофренния свят на Айнщайниана и това е възможно):

http://www.mfo.de/programme/schedule/2006/08c/OWR_2006_10.pdf

Jean Eisenstaedt: "At the end of the 18th century, a natural extension of Newton's dynamics to light was developed but immediately forgotten. A body of works completed the Principia with a relativistic optics of moving bodies, the discovery of the Doppler-Fizeau effect some sixty years before Doppler, and many other effects and ideas which represent a fascinating preamble to Einstein relativities. It was simply supposed that 'a body-light', as Newton named it, was subject to the whole dynamics of the Principia in much the same way as were material particles; thus it was subject to the Galilean relativity and its velocity was supposed to be variable. Of course it was subject to the short range 'refringent' force of the corpuscular theory of light --which is part of the Principia-- but also to the long range force of gravitation which induces Newton's theory of gravitation. The fact that the 'mass' of a corpuscle of light was not known did not constitute a problem since it does not appear in the Newtonian (or Einsteinian) equations of motion. It was precisely what John Michell (1724-1793), Robert Blair (1748-1828), Johann G. von Soldner (1776-1833) and Fran¸cois Arago (1786-1853) were to do at the end of the 18th century and the beginning the 19th century in the context of Newton's dynamics. Actually this 'completed' Newtonian theory of light and material corpuscle seems to have been implicitly accepted at the time. In such a Newtonian context, not only Soldner's calculation of the deviation of light in a gravitational field was understood, but also dark bodies (cousins of black holes). A natural (Galilean and thus relativistic) optics of moving bodies was also developed which easily explained aberration and implied as well the essence of what we call today the Doppler effect. Moreover, at the same time the structure of -- but also the questions raised by-- the Michelson experiment was understood. Most of this corpus has long been forgotten. The Michell-Blair-Arago effect, prior to Doppler's effect, is entirely unknown to physicists and historians. As to the influence of gravitation on light, the story was very superficially known but had never been studied in any detail. Moreover, the existence of a theory dealing with light, relativity and gravitation, embedded in Newton's Principia was completely ignored by physicists and by historians as well. But it was a simple and natural way to deal with the question of light, relativity (and gravitation) in a Newtonian context. EINSTEIN HIMSELF DID NOT KNOW OF THIS NEWTONIAN THEORY OF LIGHT AND HE DID NOT RELY ON IT IN HIS OWN RESEARCH."

http://ustl1.univ-lille1.fr/culture/publication/lna/detail/lna40/pgs/4_5.pdf

Jean Eisenstaedt: "Il n'y a alors aucune raison théorique à ce que la vitesse de la lumière ne dépende pas de la vitesse de sa source ainsi que de celle de l'observateur terrestre ; plus clairement encore, il n'y a pas de raison, dans le cadre de la logique des Principia de Newton, pour que la lumière se comporte autrement - quant à sa trajectoire - qu'une particule matérielle. Il n'y a pas non plus de raison pour que la lumière ne soit pas sensible à la gravitation. Bref, pourquoi ne pas appliquer à la lumière toute la théorie newtonienne ? C'est en fait ce que font plusieurs astronomes, opticiens, philosophes de la nature à la fin du XVIIIème siècle. Les résultats sont étonnants... et aujourd'hui nouveaux. (...) Même s'il était conscient de l'intérêt de la théorie de l'émission, Einstein n'a pas pris le chemin, totalement oublié, de Michell, de Blair, des Principia en somme. Le contexte de découverte de la relativité ignorera le XVIIIème siècle et ses racines historiques plongent au coeur du XIXème siècle. Arago, Fresnel, Fizeau, Maxwell, Mascart, Michelson, Poincaré, Lorentz en furent les principaux acteurs et l'optique ondulatoire le cadre dans lequel ces questions sont posées. Pourtant, au plan des structures physiques, l'optique relativiste des corps en mouvement de cette fin du XVIIIème est infiniment plus intéressante - et plus utile pédagogiquement - que le long cheminement qu'a imposé l'éther."

http://www.passiondulivre.com/livre-6446-avant-einstein-relativite-lumiere-gravitation.htm

"Étrangement, personne n'est jamais vraiment allé voir ce que l'on en pensait «avant», avant Einstein, avant Poincaré, avant Maxwell. Pourtant, quelques savants austères et ignorés, John Michell, Robert Blair et d'autres encore, s'y sont intéressés, de très près. Newtoniens impénitents, ces «philosophes de la nature» ont tout simplement traité la lumière comme faite de vulgaires particules matérielles : des «corpuscules lumineux». Mais ce sont gens sérieux et ils se sont basés sur leurs Classiques, Galilée, Newton et ses Principia où déjà l'on trouve des idées intéressantes. À la fin du XVIIIe siècle, au siècle des Lumières (si bien nommé en l'occurrence !), en Angleterre, en Écosse, en Prusse et même à Paris, une véritable balistique de la lumière sous-tend silencieusement la théorie de l'émission, avatar de la théorie corpusculaire de la lumière de Newton. Lus à la lumière (!) des théories aujourd'hui acceptées, les résultats ne sont pas minces. (...) Les «relativités» d'Einstein, cinématique einsteinienne et théorie de la gravitation, ont la triste réputation d'être difficiles... Ne remettent-elles pas en cause des notions familières ? Leur «refonte» est d'autant plus nécessaire. Cette préhistoire en est un nouvel acte qui offre un autre chemin vers ces théories délicates. Mais ce chemin, aussi long soit-il, est un raccourci, qu'il est temps, cent ans après «la» relativité d'Einstein, de découvrir et d'explorer."

Айнщайн знае през цялото време че емисионната теория е вярна и на два пъти - през 1909 и 1954г. - гузната му съвест се обажда:

http://en.wikisource.org/wiki/The_Development_of_Our_Views_on_the_Composition_and_Essence_of_Radiation

The Development of Our Views on the Composition and Essence of Radiation by Albert Einstein, 1909

"A large body of facts shows undeniably that light has certain fundamental properties that are better explained by Newton's emission theory of light than by the oscillation theory. For this reason, I believe that the next phase in the development of theoretical physics will bring us a theory of light that can be considered a fusion of the oscillation and emission theories. The purpose of the following remarks is to justify this belief and to show that a profound change in our views on the composition and essence of light is imperative.....Then the electromagnetic fields that make up light no longer appear as a state of a hypothetical medium, but rather as independent entities that the light source gives off, just as in Newton's emission theory of light......Relativity theory has changed our views on light. Light is conceived not as a manifestation of the state of some hypothetical medium, but rather as an independent entity like matter. Moreover, this theory shares with the corpuscular theory of light the unusual property that light carries inertial mass from the emitting to the absorbing object."

http://www.perimeterinstitute.ca/pdf/files/975547d7-2d00-433a-b7e3-4a09145525ca.pdf

Albert Einstein 1954: "I consider it entirely possible that physics cannot be based upon the field concept, that is on continuous structures. Then nothing will remain of my whole castle in the air, including the theory of gravitation, but also nothing of the rest of contemporary physics."

Твърдението на Айнщайн от 1954г. е малко енигматично (не личи ясно връзката с емисионната теория на Нютон), но следните 2 цитата ще внесат известна яснота:

http://www.pbs.org/wgbh/nova/einstein/genius/

"Genius Among Geniuses" by Thomas Levenson

"And then, in June, Einstein completes special relativity, which adds a twist to the story: Einstein's March paper treated light as particles, but special relativity sees light as a continuous field of waves. Alice's Red Queen can accept many impossible things before breakfast, but it takes a supremely confident mind to do so. Einstein, age 26, sees light as wave and particle, picking the attribute he needs to confront each problem in turn. Now that's tough."

http://books.google.com/books?id=JokgnS1JtmMC

"Relativity and Its Roots" By Banesh Hoffmann

p.92: "Moreover, if light consists of particles, as Einstein had suggested in his paper submitted just thirteen weeks before this one, the second principle seems absurd: A stone thrown from a speeding train can do far more damage than one thrown from a train at rest; the speed of the particle is not independent of the motion of the object emitting it. And if we take light to consist of particles and assume that these particles obey Newton's laws, they will conform to Newtonian relativity and thus automatically account for the null result of the Michelson-Morley experiment without recourse to contracting lengths, local time, or Lorentz transformations. Yet, as we have seen, Einstein resisted the temptation to account for the null result in terms of particles of light and simple, familiar Newtonian ideas, and introduced as his second postulate something that was more or less obvious when thought of in terms of waves in an ether."

Пенчо Вълев

pvalev@yahoo.com

  • Потребител
Публикува

Емисионната теория на Нютон се състои от всички следствия на допускането че скоростта на светлината ЗАВИСИ от скоростта на източника, така както скоростта на камъка хвърлен от движещ се влак зависи от скоростта на влака. Постигнала е големи успехи през 18-ти век, след това е била напълно забравена.

Има един глупав но популярен френски релативист, Jean Eisenstaedt, който печели добре като я прославя (в шизофренния свят на Айнщайниана и това е възможно):

http://www.mfo.de/programme/schedule/2006/08c/OWR_2006_10.pdf

Jean Eisenstaedt: "At the end of the 18th century, a natural extension of Newton's dynamics to light was developed but immediately forgotten. A body of works completed the Principia with a relativistic optics of moving bodies, the discovery of the Doppler-Fizeau effect some sixty years before Doppler, and many other effects and ideas which represent a fascinating preamble to Einstein relativities. It was simply supposed that 'a body-light', as Newton named it, was subject to the whole dynamics of the Principia in much the same way as were material particles; thus it was subject to the Galilean relativity and its velocity was supposed to be variable. Of course it was subject to the short range 'refringent' force of the corpuscular theory of light --which is part of the Principia-- but also to the long range force of gravitation which induces Newton's theory of gravitation. The fact that the 'mass' of a corpuscle of light was not known did not constitute a problem since it does not appear in the Newtonian (or Einsteinian) equations of motion. It was precisely what John Michell (1724-1793), Robert Blair (1748-1828), Johann G. von Soldner (1776-1833) and Fran¸cois Arago (1786-1853) were to do at the end of the 18th century and the beginning the 19th century in the context of Newton's dynamics. Actually this 'completed' Newtonian theory of light and material corpuscle seems to have been implicitly accepted at the time. In such a Newtonian context, not only Soldner's calculation of the deviation of light in a gravitational field was understood, but also dark bodies (cousins of black holes). A natural (Galilean and thus relativistic) optics of moving bodies was also developed which easily explained aberration and implied as well the essence of what we call today the Doppler effect. Moreover, at the same time the structure of -- but also the questions raised by-- the Michelson experiment was understood. Most of this corpus has long been forgotten. The Michell-Blair-Arago effect, prior to Doppler's effect, is entirely unknown to physicists and historians. As to the influence of gravitation on light, the story was very superficially known but had never been studied in any detail. Moreover, the existence of a theory dealing with light, relativity and gravitation, embedded in Newton's Principia was completely ignored by physicists and by historians as well. But it was a simple and natural way to deal with the question of light, relativity (and gravitation) in a Newtonian context. EINSTEIN HIMSELF DID NOT KNOW OF THIS NEWTONIAN THEORY OF LIGHT AND HE DID NOT RELY ON IT IN HIS OWN RESEARCH."

http://ustl1.univ-lille1.fr/culture/publication/lna/detail/lna40/pgs/4_5.pdf

Jean Eisenstaedt: "Il n'y a alors aucune raison théorique à ce que la vitesse de la lumière ne dépende pas de la vitesse de sa source ainsi que de celle de l'observateur terrestre ; plus clairement encore, il n'y a pas de raison, dans le cadre de la logique des Principia de Newton, pour que la lumière se comporte autrement - quant à sa trajectoire - qu'une particule matérielle. Il n'y a pas non plus de raison pour que la lumière ne soit pas sensible à la gravitation. Bref, pourquoi ne pas appliquer à la lumière toute la théorie newtonienne ? C'est en fait ce que font plusieurs astronomes, opticiens, philosophes de la nature à la fin du XVIIIème siècle. Les résultats sont étonnants... et aujourd'hui nouveaux. (...) Même s'il était conscient de l'intérêt de la théorie de l'émission, Einstein n'a pas pris le chemin, totalement oublié, de Michell, de Blair, des Principia en somme. Le contexte de découverte de la relativité ignorera le XVIIIème siècle et ses racines historiques plongent au coeur du XIXème siècle. Arago, Fresnel, Fizeau, Maxwell, Mascart, Michelson, Poincaré, Lorentz en furent les principaux acteurs et l'optique ondulatoire le cadre dans lequel ces questions sont posées. Pourtant, au plan des structures physiques, l'optique relativiste des corps en mouvement de cette fin du XVIIIème est infiniment plus intéressante - et plus utile pédagogiquement - que le long cheminement qu'a imposé l'éther."

http://www.passiondulivre.com/livre-6446-avant-einstein-relativite-lumiere-gravitation.htm

"Étrangement, personne n'est jamais vraiment allé voir ce que l'on en pensait «avant», avant Einstein, avant Poincaré, avant Maxwell. Pourtant, quelques savants austères et ignorés, John Michell, Robert Blair et d'autres encore, s'y sont intéressés, de très près. Newtoniens impénitents, ces «philosophes de la nature» ont tout simplement traité la lumière comme faite de vulgaires particules matérielles : des «corpuscules lumineux». Mais ce sont gens sérieux et ils se sont basés sur leurs Classiques, Galilée, Newton et ses Principia où déjà l'on trouve des idées intéressantes. À la fin du XVIIIe siècle, au siècle des Lumières (si bien nommé en l'occurrence !), en Angleterre, en Écosse, en Prusse et même à Paris, une véritable balistique de la lumière sous-tend silencieusement la théorie de l'émission, avatar de la théorie corpusculaire de la lumière de Newton. Lus à la lumière (!) des théories aujourd'hui acceptées, les résultats ne sont pas minces. (...) Les «relativités» d'Einstein, cinématique einsteinienne et théorie de la gravitation, ont la triste réputation d'être difficiles... Ne remettent-elles pas en cause des notions familières ? Leur «refonte» est d'autant plus nécessaire. Cette préhistoire en est un nouvel acte qui offre un autre chemin vers ces théories délicates. Mais ce chemin, aussi long soit-il, est un raccourci, qu'il est temps, cent ans après «la» relativité d'Einstein, de découvrir et d'explorer."

Айнщайн знае през цялото време че емисионната теория е вярна и на два пъти - през 1909 и 1954г. - гузната му съвест се обажда:

http://en.wikisource.org/wiki/The_Development_of_Our_Views_on_the_Composition_and_Essence_of_Radiation

The Development of Our Views on the Composition and Essence of Radiation by Albert Einstein, 1909

"A large body of facts shows undeniably that light has certain fundamental properties that are better explained by Newton's emission theory of light than by the oscillation theory. For this reason, I believe that the next phase in the development of theoretical physics will bring us a theory of light that can be considered a fusion of the oscillation and emission theories. The purpose of the following remarks is to justify this belief and to show that a profound change in our views on the composition and essence of light is imperative.....Then the electromagnetic fields that make up light no longer appear as a state of a hypothetical medium, but rather as independent entities that the light source gives off, just as in Newton's emission theory of light......Relativity theory has changed our views on light. Light is conceived not as a manifestation of the state of some hypothetical medium, but rather as an independent entity like matter. Moreover, this theory shares with the corpuscular theory of light the unusual property that light carries inertial mass from the emitting to the absorbing object."

http://www.perimeterinstitute.ca/pdf/files/975547d7-2d00-433a-b7e3-4a09145525ca.pdf

Albert Einstein 1954: "I consider it entirely possible that physics cannot be based upon the field concept, that is on continuous structures. Then nothing will remain of my whole castle in the air, including the theory of gravitation, but also nothing of the rest of contemporary physics."

Твърдението на Айнщайн от 1954г. е малко енигматично (не личи ясно връзката с емисионната теория на Нютон), но следните 2 цитата ще внесат известна яснота:

http://www.pbs.org/wgbh/nova/einstein/genius/

"Genius Among Geniuses" by Thomas Levenson

"And then, in June, Einstein completes special relativity, which adds a twist to the story: Einstein's March paper treated light as particles, but special relativity sees light as a continuous field of waves. Alice's Red Queen can accept many impossible things before breakfast, but it takes a supremely confident mind to do so. Einstein, age 26, sees light as wave and particle, picking the attribute he needs to confront each problem in turn. Now that's tough."

http://books.google.com/books?id=JokgnS1JtmMC

"Relativity and Its Roots" By Banesh Hoffmann

p.92: "Moreover, if light consists of particles, as Einstein had suggested in his paper submitted just thirteen weeks before this one, the second principle seems absurd: A stone thrown from a speeding train can do far more damage than one thrown from a train at rest; the speed of the particle is not independent of the motion of the object emitting it. And if we take light to consist of particles and assume that these particles obey Newton's laws, they will conform to Newtonian relativity and thus automatically account for the null result of the Michelson-Morley experiment without recourse to contracting lengths, local time, or Lorentz transformations. Yet, as we have seen, Einstein resisted the temptation to account for the null result in terms of particles of light and simple, familiar Newtonian ideas, and introduced as his second postulate something that was more or less obvious when thought of in terms of waves in an ether."

Пенчо Вълев

pvalev@yahoo.com

  • Потребител
Публикува

Да вярна е но преди да се доказва каквото и да било трябва поне да се посее някакво съмнение в Divine Albert's Divine Theory - иначе митологията работи толкова добре че Пенка си пее, никой не я слуша, кучетата лаят, керванът си върви и т.н. Затова да помислим върху т. нар. три класически теста (аз бих ги нарекъл три класически измами):

The three classical tests of Einstein's general relativity - the 1919 measurement of the deflection of starlight, Mercury's anomalous perihelion advance and Eddington's estimate and Adams' measurement of Sirius B gravitational redshift (in a world different from Einsteiniana's schizophrenic world "classical" would be replaced by "fraudulent"):

http://www.newscientist.com/article/mg16321935.300-ode-to-albert.html

New Scientist: Ode to Albert

"Enter another piece of luck for Einstein. We now know that the light-bending effect was actually too small for Eddington to have discerned at that time. Had Eddington not been so receptive to Einstein's theory, he might not have reached such strong conclusions so soon, and the world would have had to wait for more accurate eclipse measurements to confirm general relativity."

http://www.amazon.com/Brief-History-Time-Stephen-Hawking/dp/0553380168

Stephen Hawking: "Einsteins prediction of light deflection could not be tested immediately in 1915, because the First World War was in progress, and it was not until 1919 that a British expedition, observing an eclipse from West Africa, showed that light was indeed deflected by the sun, just as predicted by the theory. This proof of a German theory by British scientists was hailed as a great act of reconciliation between the two countries after the war. It is ionic, therefore, that later examination of the photographs taken on that expedition showed the errors were as great as the effect they were trying to measure. Their measurement had been sheer luck, or a case of knowing the result they wanted to get, not an uncommon occurrence in science."

http://discovermagazine.com/2008/mar/20-things-you-didn.t-know-about-relativity

"The eclipse experiment finally happened in 1919 (youre looking at it on this very page). Eminent British physicist Arthur Eddington declared general relativity a success, catapulting Einstein into fame and onto coffee mugs. In retrospect, it seems that Eddington fudged the results, throwing out photos that showed the wrong outcome. No wonder nobody noticed: At the time of Einsteins death in 1955, scientists still had almost no evidence of general relativity in action."

http://www.cieletespace.fr/evenement/relativit-les-preuves-taient-fausses

Jean-Marc Bonnet-Bidaud: "L'expédition britannique envoie deux équipes indépendantes sur le trajet de l'éclipse : l'une dirigée par Andrew Crommelin dans la ville de Sobral, dans le nord du Brésil, l'autre conduite par Eddington lui-même sur l'île de Principe, en face de Libreville, au Gabon. Le matériel embarqué est des plus sommaires au regard des moyens actuels : une lunette astronomique de seulement 20 cm de diamètre en chaque lieu, avec un instrument de secours de 10 cm à Sobral. Pour éviter l'emploi d'une monture mécanique trop lourde à transporter, la lumière est dirigée vers les lunettes par de simples miroirs mobiles, ce qui se révélera être une bien mauvaise idée. La stratégie est assez complexe. Il s'agit d'exposer des plaques photographiques durant l'éclipse pour enregistrer la position d'un maximum d'étoiles autour du Soleil, puis de comparer avec des plaques témoins de la même région du ciel obtenues de nuit, quelques mois plus tard. La différence des positions entre les deux séries de plaques, avec et sans le Soleil, serait la preuve de l'effet de la relativité et le résultat est bien sûr connu à l'avance. Problème non négligeable : la différence attendue est minuscule. Au maximum, au bord même du Soleil, l'écart prévu est seulement de un demi dix-millième de degré, soit très précisément 1,75 seconde d'arc (1,75"), correspondant à l'écart entre les deux bords d'une pièce de monnaie observée à 3 km de distance ! Or, quantités d'effets parasites peuvent contaminer les mesures, la qualité de l'émulsion photographique, les variations dans l'atmosphère terrestre, la dilatation des miroirs... Le jour J, l'équipe brésilienne voit le ciel se dégager au dernier moment mais Eddington n'aperçoit l'éclipse qu'à travers les nuages ! Sa quête est très maigre, tout juste deux plaques sur lesquelles on distingue à peine cinq étoiles. Pressé de rentrer en Angleterre, Eddington ne prend même pas la précaution d'attendre les plaques témoins. Les choses vont beaucoup mieux à Sobral : 19 plaques avec plus d'une dizaine d'étoiles et huit plaques prises avec la lunette de secours. L'équipe reste sur place deux mois pour réaliser les fameuses plaques témoins et, le 25 août, tout le monde est en Angleterre. Eddington se lance dans des calculs qu'il est le seul à contrôler, décidant de corriger ses propres mesures avec des plaques obtenues avec un autre instrument, dans une autre région du ciel, autour d'Arcturus. Il conclut finalement à une déviation comprise entre 1,31" et 1,91" : le triomphe d'Einstein est assuré ! Très peu sûr de sa méthode, Eddington attend anxieusement les résultats de l'autre expédition qui arrivent en octobre, comme une douche froide : suivant une méthode d'analyse rigoureuse, l'instrument principal de Sobral a mesuré une déviation de seulement 0,93". La catastrophe est en vue. S'ensuivent de longues tractations entre Eddington et Dyson, directeurs respectifs des observatoires de Cambridge et de Greenwich. On repêche alors les données de la lunette de secours de Sobral, qui a le bon goût de produire comme résultat un confortable 1,98", et le tour de passe-passe est joué. Dans la publication historique de la Royal Society, on lit comme justification une simple note : "Il reste les plaques astrographiques de Sobral qui donnent une déviation de 0,93", discordantes par une quantité au-delà des limites des erreurs accidentelles. Pour les raisons déjà longuement exposées, peu de poids est accordé à cette détermination." Plus loin, apparaît la conclusion catégorique: "Les résultats de Sobral et Principe laissent peu de doute qu'une déviation de la lumière existe au voisinage du Soleil et qu'elle est d'une amplitude exigée par la théorie de la relativité généralisée d'Einstein." Les données gênantes ont donc tout simplement été escamotées."

http://alasource.blogs.nouvelobs.com/archive/2009/01/26/l-erreur-d-einstein-la-deuxieme.html

"D'abord il [Einstein] fait une hypothèse fausse (facile à dire aujourd'hui !) dans son équation de départ qui décrit les relations étroites entre géométrie de l'espace et contenu de matière de cet espace. Avec cette hypothèse il tente de calculer l'avance du périhélie de Mercure. Cette petite anomalie (à l'époque) du mouvement de la planète était un mystère. Einstein et Besso aboutissent finalement sur un nombre aberrant et s'aperçoivent qu'en fait le résultat est cent fois trop grand à cause d'une erreur dans la masse du soleil... Mais, même corrigé, le résultat reste loin des observations. Pourtant le physicien ne rejeta pas son idée. "Nous voyons là que si les critères de Popper étaient toujours respectés, la théorie aurait dû être abandonnée", constate, ironique, Etienne Klein. Un coup de main d'un autre ami, Grossmann, sortira Einstein de la difficulté et sa nouvelle équation s'avéra bonne. En quelques jours, il trouve la bonne réponse pour l'avance du périhélie de Mercure..."

http://www.cieletespace.fr/evenement/relativit-les-preuves-taient-fausses

Jean-Marc Bonnet-Bidaud: "L'épilogue du dernier test de la relativité, celui de l'orbite de Mercure, est encore plus passionnant. Ce fut en réalité un test a posteriori de la théorie, puisque la prédiction a fait suite à l'observation et ne l'a pas précédée. L'accord est stupéfiant. Le décalage observé dans la position de Mercure est de 43,11" par siècle, tandis que la prédiction de la relativité est de 42,98" par siècle ! Cette révision de l'horloge cosmique est toujours considérée comme le grand succès d'Einstein, mais elle est encore sous l'épée de Damoclès. En effet, des scientifiques soupçonnent que le Soleil pourrait ne pas être rigoureusement sphérique et un "aplatissement" réel introduirait une correction supplémentaire. La précision actuelle deviendrait alors le talon d'Achille compromettant le bel accord de la théorie."

http://www.upd.aas.org/had/meetings/2010Abstracts.html

Open Questions Regarding the 1925 Measurement of the Gravitational Redshift of Sirius B

Jay B. Holberg Univ. of Arizona.

"In January 1924 Arthur Eddington wrote to Walter S. Adams at the Mt. Wilson Observatory suggesting a measurement of the "Einstein shift" in Sirius B and providing an estimate of its magnitude. Adams' 1925 published results agreed remarkably well with Eddington's estimate. Initially this achievement was hailed as the third empirical test of General Relativity (after Mercury's anomalous perihelion advance and the 1919 measurement of the deflection of starlight). IT HAS BEEN KNOWN FOR SOME TIME THAT BOTH EDDINGTON'S ESTIMATE AND ADAMS' MEASUREMENT UNDERESTIMATED THE TRUE SIRIUS B GRAVITATIONAL REDSHIFT BY A FACTOR OF FOUR."

http://www.cieletespace.fr/evenement/relativit-les-preuves-taient-fausses

Jean-Marc Bonnet Bidaud: "Autour de l'étoile brillante Sirius, on découvre une petite étoile, Sirius B, à la fois très chaude et très faiblement lumineuse. Pour expliquer ces deux particularités, il faut supposer que l'étoile est aussi massive que le Soleil et aussi petite qu'une planète comme la Terre. C'est Eddington lui-même qui aboutit à cette conclusion dont il voit vite l'intérêt : avec de telles caractéristiques, ces naines blanches sont extrêmement denses et leur gravité très puissante. Le décalage vers le rouge de la gravitation est donc 100 fois plus élevé que sur le Soleil. Une occasion inespérée pour mesurer enfin quelque chose d'appréciable. Eddington s'adresse aussitôt à Walter Adams, directeur de l'observatoire du mont Wilson, en Californie, afin que le télescope de 2,5 m de diamètre Hooker entreprenne les vérifications. Selon ses estimations, basées sur une température de 8 000 degrés de Sirius B, mesurée par Adams lui-même, le décalage vers le rouge prédit par la relativité, en s'élevant à 20 km/s, devrait être facilement mesurable. Adams mobilise d'urgence le grand télescope et expose 28 plaques photographiques pour réaliser la mesure. Son rapport, publié le 18 mai 1925, est très confus car il mesure des vitesses allant de 2 à 33 km/s. Mais, par le jeu de corrections arbitraires dont personne ne comprendra jamais la logique, le décalage passe finalement à 21 km/s, plus tard corrigé à 19 km/s, et Eddington de conclure : "Les résultats peuvent être considérés comme fournissant une preuve directe de la validité du troisième test de la théorie de la relativité générale." Adams et Eddington se congratulent, ils viennent encore de "prouver" Einstein. Ce résultat, pourtant faux, ne sera pas remis en cause avant 1971. Manque de chance effectivement, la première mesure de température de Sirius B était largement inexacte : au lieu des 8 000 degrés envisagés par Eddington, l'étoile fait en réalité près de 30 000 degrés. Elle est donc beaucoup plus petite, sa gravité est plus intense et le décalage vers le rouge mesurable est de 89 km/s. C'est ce qu'aurait dû trouver Adams sur ses plaques s'il n'avait pas été "influencé" par le calcul erroné d'Eddington. L'écart est tellement flagrant que la suspicion de fraude a bien été envisagée."

Пенчо Вълев

pvalev@yahoo.com

  • Глобален Модератор
Публикува

Пенчо, да не си объркал форума?

Цитатничеството е похват за доказателство на теза само в религията, поради липса на други механизми там. Еди кой си е изтърсил нещо, значи това е аргумент? В науката това не върви, всеки може да сгреши, каквито са и фактите. Върви само в религията, защото там има непогрешим авторитет и казаното от него се приема за истина. Единственият авторитет в науката е опитът.

Гледам, целият интернет си нацвъкал само с цитати като аргументи. Използувай главата на раменете си. Иначе за какво ти е дадена?

Повтарянето на едно и също без обосновка не го прави истина, това също не е похват в науката. Тази Нютонова емисионна теория, дето твърдиш че е вярна, попада в същата категория. Нали щеше да показваш как експеримента на Майкелсън-Морли доказвал основното положение на тази теория, че c' = c + v? Целият съм в слух.

  • Потребител
Публикува

:post-70473-1124971712:

Да вярна е но преди да се доказва каквото и да било трябва поне да се посее някакво съмнение в Divine Albert's Divine Theory - иначе митологията работи толкова добре че Пенка си пее, никой не я слуша, кучетата лаят, керванът си върви и т.н.

Затова да помислим върху т. нар. три класически теста (аз бих ги нарекъл три класически измами):

The three classical tests of Einstein's general relativity - the 1919 measurement of the deflection of starlight, Mercury's anomalous perihelion advance and Eddington's estimate and Adams' measurement of Sirius B gravitational redshift (in a world different from Einsteiniana's schizophrenic world "classical" would be replaced by "fraudulent"):

http://www.newscientist.com/article/mg16321935.300-ode-to-albert.html

New Scientist: Ode to Albert

"Enter another piece of luck for Einstein. We now know that the light-bending effect was actually too small for Eddington to have discerned at that time. Had Eddington not been so receptive to Einstein's theory, he might not have reached such strong conclusions so soon, and the world would have had to wait for more accurate eclipse measurements to confirm general relativity."

http://www.amazon.com/Brief-History-Time-Stephen-Hawking/dp/0553380168

Stephen Hawking: "Einsteins prediction of light deflection could not be tested immediately in 1915, because the First World War was in progress, and it was not until 1919 that a British expedition, observing an eclipse from West Africa, showed that light was indeed deflected by the sun, just as predicted by the theory. This proof of a German theory by British scientists was hailed as a great act of reconciliation between the two countries after the war. It is ionic, therefore, that later examination of the photographs taken on that expedition showed the errors were as great as the effect they were trying to measure. Their measurement had been sheer luck, or a case of knowing the result they wanted to get, not an uncommon occurrence in science."

http://discovermagazine.com/2008/mar/20-things-you-didn.t-know-about-relativity

"The eclipse experiment finally happened in 1919 (youre looking at it on this very page). Eminent British physicist Arthur Eddington declared general relativity a success, catapulting Einstein into fame and onto coffee mugs. In retrospect, it seems that Eddington fudged the results, throwing out photos that showed the wrong outcome. No wonder nobody noticed: At the time of Einsteins death in 1955, scientists still had almost no evidence of general relativity in action."

http://www.cieletespace.fr/evenement/relativit-les-preuves-taient-fausses

Jean-Marc Bonnet-Bidaud: "L'expédition britannique envoie deux équipes indépendantes sur le trajet de l'éclipse : l'une dirigée par Andrew Crommelin dans la ville de Sobral, dans le nord du Brésil, l'autre conduite par Eddington lui-même sur l'île de Principe, en face de Libreville, au Gabon. Le matériel embarqué est des plus sommaires au regard des moyens actuels : une lunette astronomique de seulement 20 cm de diamètre en chaque lieu, avec un instrument de secours de 10 cm à Sobral. Pour éviter l'emploi d'une monture mécanique trop lourde à transporter, la lumière est dirigée vers les lunettes par de simples miroirs mobiles, ce qui se révélera être une bien mauvaise idée. La stratégie est assez complexe. Il s'agit d'exposer des plaques photographiques durant l'éclipse pour enregistrer la position d'un maximum d'étoiles autour du Soleil, puis de comparer avec des plaques témoins de la même région du ciel obtenues de nuit, quelques mois plus tard. La différence des positions entre les deux séries de plaques, avec et sans le Soleil, serait la preuve de l'effet de la relativité et le résultat est bien sûr connu à l'avance. Problème non négligeable : la différence attendue est minuscule. Au maximum, au bord même du Soleil, l'écart prévu est seulement de un demi dix-millième de degré, soit très précisément 1,75 seconde d'arc (1,75"), correspondant à l'écart entre les deux bords d'une pièce de monnaie observée à 3 km de distance ! Or, quantités d'effets parasites peuvent contaminer les mesures, la qualité de l'émulsion photographique, les variations dans l'atmosphère terrestre, la dilatation des miroirs... Le jour J, l'équipe brésilienne voit le ciel se dégager au dernier moment mais Eddington n'aperçoit l'éclipse qu'à travers les nuages ! Sa quête est très maigre, tout juste deux plaques sur lesquelles on distingue à peine cinq étoiles. Pressé de rentrer en Angleterre, Eddington ne prend même pas la précaution d'attendre les plaques témoins. Les choses vont beaucoup mieux à Sobral : 19 plaques avec plus d'une dizaine d'étoiles et huit plaques prises avec la lunette de secours. L'équipe reste sur place deux mois pour réaliser les fameuses plaques témoins et, le 25 août, tout le monde est en Angleterre. Eddington se lance dans des calculs qu'il est le seul à contrôler, décidant de corriger ses propres mesures avec des plaques obtenues avec un autre instrument, dans une autre région du ciel, autour d'Arcturus. Il conclut finalement à une déviation comprise entre 1,31" et 1,91" : le triomphe d'Einstein est assuré ! Très peu sûr de sa méthode, Eddington attend anxieusement les résultats de l'autre expédition qui arrivent en octobre, comme une douche froide : suivant une méthode d'analyse rigoureuse, l'instrument principal de Sobral a mesuré une déviation de seulement 0,93". La catastrophe est en vue. S'ensuivent de longues tractations entre Eddington et Dyson, directeurs respectifs des observatoires de Cambridge et de Greenwich. On repêche alors les données de la lunette de secours de Sobral, qui a le bon goût de produire comme résultat un confortable 1,98", et le tour de passe-passe est joué. Dans la publication historique de la Royal Society, on lit comme justification une simple note : "Il reste les plaques astrographiques de Sobral qui donnent une déviation de 0,93", discordantes par une quantité au-delà des limites des erreurs accidentelles. Pour les raisons déjà longuement exposées, peu de poids est accordé à cette détermination." Plus loin, apparaît la conclusion catégorique: "Les résultats de Sobral et Principe laissent peu de doute qu'une déviation de la lumière existe au voisinage du Soleil et qu'elle est d'une amplitude exigée par la théorie de la relativité généralisée d'Einstein." Les données gênantes ont donc tout simplement été escamotées."

http://alasource.blogs.nouvelobs.com/archive/2009/01/26/l-erreur-d-einstein-la-deuxieme.html

"D'abord il [Einstein] fait une hypothèse fausse (facile à dire aujourd'hui !) dans son équation de départ qui décrit les relations étroites entre géométrie de l'espace et contenu de matière de cet espace. Avec cette hypothèse il tente de calculer l'avance du périhélie de Mercure. Cette petite anomalie (à l'époque) du mouvement de la planète était un mystère. Einstein et Besso aboutissent finalement sur un nombre aberrant et s'aperçoivent qu'en fait le résultat est cent fois trop grand à cause d'une erreur dans la masse du soleil... Mais, même corrigé, le résultat reste loin des observations. Pourtant le physicien ne rejeta pas son idée. "Nous voyons là que si les critères de Popper étaient toujours respectés, la théorie aurait dû être abandonnée", constate, ironique, Etienne Klein. Un coup de main d'un autre ami, Grossmann, sortira Einstein de la difficulté et sa nouvelle équation s'avéra bonne. En quelques jours, il trouve la bonne réponse pour l'avance du périhélie de Mercure..."

http://www.cieletespace.fr/evenement/relativit-les-preuves-taient-fausses

Jean-Marc Bonnet-Bidaud: "L'épilogue du dernier test de la relativité, celui de l'orbite de Mercure, est encore plus passionnant. Ce fut en réalité un test a posteriori de la théorie, puisque la prédiction a fait suite à l'observation et ne l'a pas précédée. L'accord est stupéfiant. Le décalage observé dans la position de Mercure est de 43,11" par siècle, tandis que la prédiction de la relativité est de 42,98" par siècle ! Cette révision de l'horloge cosmique est toujours considérée comme le grand succès d'Einstein, mais elle est encore sous l'épée de Damoclès. En effet, des scientifiques soupçonnent que le Soleil pourrait ne pas être rigoureusement sphérique et un "aplatissement" réel introduirait une correction supplémentaire. La précision actuelle deviendrait alors le talon d'Achille compromettant le bel accord de la théorie."

http://www.upd.aas.org/had/meetings/2010Abstracts.html

Open Questions Regarding the 1925 Measurement of the Gravitational Redshift of Sirius B

Jay B. Holberg Univ. of Arizona.

"In January 1924 Arthur Eddington wrote to Walter S. Adams at the Mt. Wilson Observatory suggesting a measurement of the "Einstein shift" in Sirius B and providing an estimate of its magnitude. Adams' 1925 published results agreed remarkably well with Eddington's estimate. Initially this achievement was hailed as the third empirical test of General Relativity (after Mercury's anomalous perihelion advance and the 1919 measurement of the deflection of starlight). IT HAS BEEN KNOWN FOR SOME TIME THAT BOTH EDDINGTON'S ESTIMATE AND ADAMS' MEASUREMENT UNDERESTIMATED THE TRUE SIRIUS B GRAVITATIONAL REDSHIFT BY A FACTOR OF FOUR."

http://www.cieletespace.fr/evenement/relativit-les-preuves-taient-fausses

Jean-Marc Bonnet Bidaud: "Autour de l'étoile brillante Sirius, on découvre une petite étoile, Sirius B, à la fois très chaude et très faiblement lumineuse. Pour expliquer ces deux particularités, il faut supposer que l'étoile est aussi massive que le Soleil et aussi petite qu'une planète comme la Terre. C'est Eddington lui-même qui aboutit à cette conclusion dont il voit vite l'intérêt : avec de telles caractéristiques, ces naines blanches sont extrêmement denses et leur gravité très puissante. Le décalage vers le rouge de la gravitation est donc 100 fois plus élevé que sur le Soleil. Une occasion inespérée pour mesurer enfin quelque chose d'appréciable. Eddington s'adresse aussitôt à Walter Adams, directeur de l'observatoire du mont Wilson, en Californie, afin que le télescope de 2,5 m de diamètre Hooker entreprenne les vérifications. Selon ses estimations, basées sur une température de 8 000 degrés de Sirius B, mesurée par Adams lui-même, le décalage vers le rouge prédit par la relativité, en s'élevant à 20 km/s, devrait être facilement mesurable. Adams mobilise d'urgence le grand télescope et expose 28 plaques photographiques pour réaliser la mesure. Son rapport, publié le 18 mai 1925, est très confus car il mesure des vitesses allant de 2 à 33 km/s. Mais, par le jeu de corrections arbitraires dont personne ne comprendra jamais la logique, le décalage passe finalement à 21 km/s, plus tard corrigé à 19 km/s, et Eddington de conclure : "Les résultats peuvent être considérés comme fournissant une preuve directe de la validité du troisième test de la théorie de la relativité générale." Adams et Eddington se congratulent, ils viennent encore de "prouver" Einstein. Ce résultat, pourtant faux, ne sera pas remis en cause avant 1971. Manque de chance effectivement, la première mesure de température de Sirius B était largement inexacte : au lieu des 8 000 degrés envisagés par Eddington, l'étoile fait en réalité près de 30 000 degrés. Elle est donc beaucoup plus petite, sa gravité est plus intense et le décalage vers le rouge mesurable est de 89 km/s. C'est ce qu'aurait dû trouver Adams sur ses plaques s'il n'avait pas été "influencé" par le calcul erroné d'Eddington. L'écart est tellement flagrant que la suspicion de fraude a bien été envisagée."

Пенчо Вълев

pvalev@yahoo.com

  • Потребител
Публикува

Пенчо, да не си объркал форума?

Цитатничеството е похват за доказателство на теза само в религията,

поради липса на други механизми там. Еди кой си е изтърсил нещо, значи това е аргумент? В науката това не върви, всеки може да сгреши, каквито са и фактите. Върви само в религията, защото там има непогрешим авторитет и казаното от него се приема за истина. Единственият авторитет в науката е опитът.

Гледам, целият интернет си нацвъкал само с цитати като аргументи. Използувай главата на раменете си. Иначе за какво ти е дадена?

Повтарянето на едно и също без обосновка не го прави истина,

това също не е похват в науката. Тази Нютонова емисионна теория, дето твърдиш че е вярна, попада в същата категория. Нали щеше да показваш как експеримента на Майкелсън-Морли доказвал основното положение на тази теория, че c' = c + v? Целият съм в слух.

  • Глобален Модератор
Публикува

Не се разбира какво казваш. Използуваш тага за цитиране, а твоите мисли се губят. Насочи любознателноста си към по-ясно изразяване, като добра основа.

Напиши мнение

Може да публикувате сега и да се регистрирате по-късно. Ако вече имате акаунт, влезте от ТУК , за да публикувате.

Guest
Напиши ново мнение...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Зареждане...

За нас

"Форум Наука" е онлайн и поддържа научни, исторически и любопитни дискусии с учени, експерти, любители, учители и ученици.

За своята близо двайсет годишна история "Форум Наука" се утвърди като мост между тези, които знаят и тези, които искат да знаят. Всеки ден тук влизат хиляди, които търсят своя отговор.  Форумът е богат да информация и безкрайни дискусии по различни въпроси.

Подкрепи съществуването на форумa - направи дарение:

Дари

 

 

За контакти:

×
×
  • Create New...
×

Подкрепи форума!

Твоето дарение ще ни помогне да запазим и поддържаме това място за обмяна на знания и идеи. Благодарим ти!